В молодых отраслях, к числу которых относится ветроэнергетика, безусловно, возможны существенные технологические изменения, возможно значительное совершенствование. Более того, опыт развития отрасли за последние десятилетия показывает, что эти совершенствования действительно происходят.
Так, например, «в течение последних 25 лет, производительность ветряных турбин увеличилась в сто раз» — отмечают горячие сторонники развития ветряной энергетики из Energy Watch Group в своём докладе 2008 года.[43] Эти, и некоторые другие усовершенствования, создают устойчивую тенденцию сокращения издержек в отрасли.[44]
Однако и в этом, в целом апологетическом, докладе не отрицается, что для ветряной энергетики характерны высокие капитальные затраты.[45] Связано это, прежде всего, с переменным характером ветра. Ветер дует то сильнее, то слабее, поэтому ветряные энергетические генераторы, естественно, не могут всё время работать в полную силу. Загрузка всего лишь на 20–30 % — это, в целом, нормальный показатель для ветряного генератора. Уже поэтому их нужно в несколько раз больше, чем производящих такое же количество энергии электростанций на угле. Кроме того, если ветряки должны обеспечивать заметную долю производства электроэнергии, то слабый ветер в одном регионе должен компенсироваться подачей электроэнергии из другого региона, где сейчас ветер сильный. С другой стороны, наилучшие места для размещения ветряных генераторов (где сильный ветер чаще всего бывает) часто располагаются далеко от мест жительства и работы основных потребителей. Поэтому неудивительно, что жизнеспособная ветроэнергетика — это огромные, протяжённые сети, соединённые друг с другом.
«Протяжённые, объединённые энергосистемы разных районов, соединяющие сотни ветряных генераторов и тысячи турбин, существенно сократят неустойчивость, характерную для ветряной энергетики».[46]
И даже в этом случае, ветряные генераторы могут обеспечивать базовую нагрузку на электросети, но для покрытия пиковой нагрузки, по признанию автора доклада, потребуются дополнительные источники энергии, как-то газовые электростанции и/или мощности, позволяющие аккумулировать и хранить энергию (аккумулировать, когда ветер сильный, с тем, чтобы использовать в период слабого ветра).[47] В совокупности, необходимость строить протяжённые энергосети, соединение энергосетей, решение проблемы аккумулирования и хранения энергии, решение проблемы непрерывной подачи энергии, несмотря на прерывистость и изменчивость ветра — всё это вопросы, на которые нет простого и дешёвого ответа. Автор доклада, тем не менее, уверен, что все эти проблемы будут преодолены.
“Из-за того, что расходы на топливо, получаемое из невосполнимых природных ресурсов, растут, мы ожидаем, что вопросы… могут быть решены, и будут решены в разумные сроки» [48].
Иначе говоря, даже апологеты ветряной энергетики[49] признают, что её решающее конкурентное преимущество — это постоянное, неотвратимое удорожание топливных полезных ископаемых. Но значит ли это, что EROEI самой ветроэнергетики вырастет? В последнем позволительно усомниться. Весьма вероятно, что преимущества, вызванные совершенствованием конструкции самих генераторов, будут уравновешиваться необходимостью осуществлять значительные капиталовложения в строительство сетей и вспомогательных мощностей (которые будут тем более необходимы, чем большей будет доля ветряной энергетики в энергетическом производстве).
Что касается ядерной энергетики, то это уже достаточно зрелая отрасль, что, до некоторой степени, снижает вероятность кардинальных усовершенствований. Помимо значительных вложений и денежных, и материальных в строительство АЭС и обеспечение их функционирования, а затем, по прошествии 30–40 лет, демонтажа, ахиллесовой пятой ядерной энергетики остаётся захоронение отходов. Все существующие к настоящему моменту решения и дороги, и ненадёжны.
Конечно, определённые усовершенствования реальны. Но вот лучше ли они существующих практик? Можно, например, осуществлять строительство таких реакторов замкнутого цикла, например, бридеров. Это позволило бы решить проблему захоронения отходов и может стать актуальным в случае нехватки урана (который тоже относится к числу невосполнимых природных ресурсов). Однако ни проблему безопасности, ни проблему высокой затратности ядерной энергетики это не решает. Реакторы замкнутого цикла требуют существенно больших затрат по сравнению с широко распространёнными реакторами открытого цикла, по некоторым оценкам — в 4 раза.[50]
43
43. См. Rudolf Rechsteiner, «Wind Power in Context. Clean Revolution in the Energy Sector”. Energy Watch Group, 2008., p. 8.
49
49. По вопросу о ветряной энергетике см. также, например, E.ON Netz GmbH., “Wind Report 2004”, а также E.ON Netz GmbH., “Wind Report 2005"
50
50. См., например, доклад “The future of nuclear power. An interdisciplinary MIT study”. Massachusetts Institute of Technology, 2003. p. 5, 44