Так копируется звук, так копируется изображение в телевидении и кино. Теоретически так же можно копировать и тела… из атомов кассы. Но атомы же есть везде, если не атомы, то частицы: протоны, нейтроны и электроны, а других и не надо. Если же нет частиц, вакуум имеется повсюду, а выше высказывалось предположение, что все частицы не более чем завихрения вакуума — кольцевые, эллиптические или спиральные волны.
Но все же дело это далекое, потому что надо преодолевать два важных препятствия: информационное и энергетическое.
Информационное уже упоминалось: очень уж много в телах атомов, очень много надо передавать сигналов. По принципу Геделя, объект не может быть выражен через себя, на два предмета надо по меньшей мере два сигнала. Тем более что техника не идеальна Частота звука порядка 10~34 Гц, ее передают колебаниями порядка 106 Гц. Частота, необходимая для телевидения, 106 Гц, ее передают колебаниями порядка 109 Гц. Для одного грамма атомов в секунду нужно 1023 сигналов, т. е. 1026 Гц — чудовищная частота!
Энергетическое препятствие: обилие энергии при сборке–разборке тел. При сборке–разборке на молекулярном уровне приходится оперировать тысячами калорий, сотнями и тысячами градусов, при сборке–разборке на ядерном уровне — миллионами калорий и градусов, на уровне вакуума — полной энергией вещества Е=mс2.
Трудные барьеры
Единственное утешение — живая природа с ними справляется. Блестящее информационное решение нашла она при записи формулы белка. Белки состоят из аминокислот, это соединения, содержащие несколько атомов, но записываются они четырьмя знаками, меньше одного знака на атом. Помогает делу и параллельность, ведь не один–единственный ген штампует все нужные белки. В результате амеба изготовляет свою копию примерно за полчаса — за 1800 сек раскладывает по местам 1017 атомов, приблизительно 1014 в секунду. Это на пять порядков выше, чем в телевидении.
Но и на девять порядков меньше, чем нам нужно.
Возможно, поможет монотонность, присущая природе. Ведь не каждый атом персонально играет особенную роль. В программе построения двумя–тремя знаками можно обозначить триллион одинаковых атомов, сэкономив триллион байтов. Можно программировать целые блоки: столько таких–то клеток, столько таких–то.
Во всяком случае, в человеческом геноме записано и строение, и все построение организма; сотней тысяч генов — триллионы клеток.
И в энергетике природа нашла сложные, но экономичные решения. Живая клетка умеет дробить чересчур сильную энергию, используя энергию окисления углерода, которая на самом деле великовата для живого тела, ведь углерод–то, сгорая, дает температуру более 1000 градусов. С другой стороны, клетки умеют накапливать слабую энергию для сильных процессов. Накапливает солнечную энергию хлорофилл, запасает энергию фосфатных связей АТФ в мышцах.
Заметили бы это теплотехники, упрямо уверяющие, что добывать энергию из воздуха при обычной температуре — ну никак невозможно.
Но здесь мы выходим за границы раздела первого, посвященного неживой природе. Жизни отдан специальный, второй раздел.
Итоги. Повторяю найденные закономерности, чтобы они не утонули в спорных деталях экзотических гипотез.
Главная задача — поиски возможных будущих открытий Использовалась методика Менделеева. Давался обзор уста- новленных наукой фактов — предметов и их свойств, расставленных по «оси» — выбранному количественному порядку.
При этом выявлялись «горизонты» — границы изведанного, передний край науки. По–видимому, за горизонтом находится неизведанное, в том числе и месторождения полезных открытий.
Чтобы составить гипотезы о загоризонтном, прослеживалась закономерность изменения свойств по оси. И вот что бросилось в глаза на осях неживой природы — этажность! Смена типов тел, смена качеств на количественных осях. Этажность объясняется ограниченностью зоны устойчивости данного типа. Устойчивость же определяется в борьбе сил, скрепляющих и разрушающих — плюс– и минус–сил. Этаж существует там, где плюс–силы преобладают. Однако плюс– и минус–силы подчиняются неодинаковым закономерностям, у каждой своя формула изменения. Графики сложения их различны, на каждом этаже своеобразны, но обязательно имеется где–то максимум прочности, чаще в середине, иногда ближе к краю. И везде есть тенденция сползания к этому максимуму, на самый прочный уровень, самый низкий энергетически. При этом, естественно, отдается лишняя энергия.
Телам, кроме того, свойственна структурность: крупные тела верхних этажей состоят из меньших тел нижних этажей. Движение повсеместно: движутся тела, движутся! Энергия внешнего движения тела называется механической, внутреннего — тепловой, но на самом деле это две стороны одного движения. Механическое движение тел нижнего этажа и есть тепловое для верхнего.