Что можно сказать о клетке 6? Здесь положение немного лучше. Ведь мы уже знаем, что в «уголке», примыкающем извне к этой клетке, что-то есть. Следовательно, на клетке 10 большой диаграммы стоит красная фишка. Правда, нам неизвестно, пуста или занята сама клетка 6, но какое это имеет значение? Одной-единственной булочки в углу квадрата совершенно достаточно, чтобы мы имели право сказать: «Этот квадрат занят» и поставить на него красную фишку.
При рассмотрении клетки 7 мы оказываемся в том же положении, как и рассмотрении клетки 5: мы знаем, что она частично пуста, но не знаем, пуст или занят примыкающий к ней извне «уголок». Таким образом, на эту клетку мы также не можем поставить ни красную, ни черную фишку.
Относительно клетки 8 нам вообще ничего не известно.
Каков же результат? Он показан на диаграмме:
Наше «заключение» необходимо извлечь из весьма скудного обрывка сведений – из того лишь факта, что в квадрате xy' стоит красная фишка. Так мы приходим к суждению «Некоторые x суть y'», т. е. «Некоторые свежие булочки (суть) невкусные (булочки)», или, если вы предпочитаете выбрать в качестве субъекта y', «Некоторые невкусные булочки (суть) свежие (булочки)» (первое звучит все-таки более обнадеживающе).
Запишем теперь силлогизм полностью. Условимся ставить после посылок горизонтальную черту (означающую «следовательно») и опускать для краткости слово «булочки», стоящее в конце каждой посылки. У нас получится следующее:
«Некоторые свежие булочки неполезные».
«Ни одна вкусная булочка не неполезная».
–
«Некоторые свежие булочки невкусные».
Вот вы и решили (надо сказать, весьма успешно) свой первый силлогизм. Позвольте поздравить вас и выразить надежду, что это всего лишь начало длинной и славной серии аналогичных побед!
Попробуем теперь решить еще один силлогизм, гораздо более трудный, чем первый, после чего вы спокойно сможете играть в «Логическую игру» либо сами с собой, либо (что предпочтительнее) с приятелем, которому эта забава придется по вкусу.
Посмотрим, какое заключение можно вывести из двух посылок:
«Все драконы не лукавые».
«Все шотландцы лукавые».
Имейте в виду: я отнюдь не гарантирую, что посылки силлогизма выражают реальные факты. Во-первых, мне никогда не приходилось видеть дракона. Во-вторых, для нас, логиков, не имеет ни малейшего значения, истинны или ложны наши посылки: все, что мы должны уметь делать, – это решать, приводят ли они логически к определенному заключению. Иначе говоря, мы должны уметь доказывать, что если бы посылки истинными, то и заключение также долждно было бы быть истинным.
Как видите, настала пора отказаться от булочек, и поднос перестал быть для нас полезным. В качестве «Мира» мы должны выбрать какой-то класс предметов, включающий в себя шотландцев и драконов. Может быть, такие предметы имеет смысл назвать «существами»? Поскольку «лукавые», очевидно, является признаком, входящим в средние члены, мы выберем следующие обозначения: m=«лукавые», x=«драконы», и y=«шотландцы». Записанные полностью, наши посылки примут следующий вид:
«Все существа – драконы – нелукавые (существа)».
«Все существа – шотландцы – лукавые (существа)».
Подставляя вместо слов буквенные обозначения, получаем:
«Все x суть m'».
«Все y суть m».
Первая посылка, как вы уже знаете, состоит из двух частей:
«Некоторые x суть m'»
и
«Ни один x не есть m».
Вторая посылка также состоит из двух частей:
«Некоторые y суть m»
и
«Ни один y не есть m'».
Начнем с отрицательных частей обеих посылок, т. е. представим с помощью большой диаграммы, во-первых, суждение «Ни один x не есть m» и, во-вторых, суждение «Ни один y не есть m'». Думаю, вам не нужно объяснять, почему этим суждениям (в отдельности) соответствуют диаграммы
и что, взятые вместе, эти диаграммы образуют одну диаграмму
Осталось изобразить на полученной диаграмме две утвердительные части посылок – «Некоторые x суть m'» и «Некоторые y суть m».
Единственные две клетки большой диаграммы, в которых могут находиться предметы, обладающие признаками xm', – это «уголки» 9 и 10. Относительно клетки 9 уже известно, что она пуста. Следовательно, красную фишку мы должны поставить на «уголок» 10.
Аналогично предметы с признаками ym могут находиться лишь в клетках 11 и 13. В клетке 11 уже стоит черная фишка – клетка пуста. Следовательно, красную фишку необходимо поставить на клетку 13.
Окончательный результат – диаграмма
А что из представленных здесь сведений можно использовать при построении малой диаграммы?
Рассмотрим по порядку все четыре клетки малой диаграммы.
Клетка 5. Мы видим, что она полностью пуста (и поэтому ставим на нее черную фишку).
Клетка 6. Эта клетка занята (ее мы отметим красной фишкой).
Клетка 7. То же самое.
Клетка 8. Относительно этой клетки никаких сведений у нас нет.
Итак, малая диаграмма заполнена весьма щедро:
А какое заключение можно вывести отсюда? Одно суждение просто не в состоянии вместить столь богатую информацию, нам придется уступить и согласиться на этот раз на два суждения.
Выбрав в качестве субъекта x, мы получим первое суждение: «Все x суть y'», т. е. «Все драконы не шотландцы».
Выбрав в качестве субъекта y, мы получим второе суждение: «Все y суть x'», т. е. «Все шотландцы не драконы».
Запишем теперь весь силлогизм полностью: и две наши посылки, и оба наших заключения. Вот что у нас получится:
«Все драконые не лукавые».
«Все шотландцы лукавые».
–
«Все драконы не шотландцы».
«Все шотландцы не драконы».
На прощание я хотел бы сделать одно важное замечание. В некоторых книгах по логике вообще не предполагается, что какой-то предмет существует. Суждение «Некоторые x суть y» в таких книгах понимается так: «Признаки x и y совместимы, в силу чего некий предмет может одновременно обладать ими обоими». Суждение же «Ни один x не есть y» они интерпретируют как несовместимость признаков x и y, в силу которой ни один предмет не может обладать ими обоими.