Выбрать главу

Решение. 1) Нет. Возможно, вчера было пасмурно, но без осадков (или шел снег). С другой стороны, в один и тот же день вполне мог идти дождь и светить солнце.

2) Да. Можно либо уметь что-либо делать, либо не уметь.

Задача 1.3. Постройте отрицания к высказываниям, не пользуясь оборотом «Неверно, что…»:

1) Я встретил Вас.

2) Трудно быть богом.

Решение. 1) Построить отрицание помогает частица «не». Получается высказывание «Я не встретил Вас», противоположное исходному. Подумайте, почему высказывания «Не я встретил Вас» и «Я встретил не Вас» отрицаниями не являются.

2) Во втором лучше слово «трудно» заменить антонимом, получится, что «Богом быть легко».

Задача 1.4*. Британские ученые нашли древнюю рукопись, содержащую всего два утверждения:

1) Оба утверждения этой рукописи ложны.

2) Земля имеет форму чемодана.

Какой вывод можно сделать из этой рукописи?

Обсуждение. Пусть первое утверждение истинно. Тогда оно ложно. Противоречие. Значит, первое утверждение ложно, то есть хотя бы одно из утверждений рукописи истинно. Но в ложности первого мы уже убедились. Следовательно, истинно второе: британские ученые доказали, что Земля имеет форму чемодана.

Решение. Разумеется, «доказательство» содержит ошибку. Но какую? Рукописи не существует? Ну и что, ее не поздно и сейчас написать. Дело в другом. В первом утверждении говорится о ложности его самого. Как сказано в решении задачи 1.1 (п. 5), в логике не рассматриваются высказывания, говорящие о своей истинности или ложности. В частности, к ним нельзя применять закон исключенного третьего.

Задачи для самостоятельного решения

Задача 1.5. Объясните, почему данные предложения не являются высказываниями. Можете ли вы сконструировать аналогичные по смыслу высказывания? Как вы думаете, истинны ли они?

1. Семь раз отмерь, один раз отрежь.

2. Что нам стоит дом построить: нарисуем – будем жить.

3. Шел дождь.

Задача 1.6. Придумайте несколько высказываний и несколько предложений, не являющихся высказываниями.

Задача 1.7. Являются ли противоположными высказывания:

1) «Нельзя пользоваться калькулятором на уроках математики» и «На уроках математики можно пользоваться калькулятором»;

2) «Андрей выше Мити» и «Митя выше Андрея»?

Задача 1.8. Постройте отрицания к высказываниям, не

пользуясь оборотом «Неверно, что…»:

1) Завтра дальняя дорога выпадает королю.

2) У него деньжонок много.

3) А я денежки люблю.

Задача 1.9. 1) Директор школы категорически возражает против отмены контроля за прическами. Может ли Степа безнаказанно покрасить волосы в малиновый цвет?

2) Директор школы категорически возражает против отмены решения о запрете контроля за прическами. Может ли Степа безнаказанно покрасить волосы в малиновый цвет?

Задача 1.10*. Житель острова Крит говорит: «Все критяне лжецы». Истинно или ложно это высказывание? (В этой задаче Крит считается островом рыцарей и лжецов.)

Задача 1.11. К каждому из высказываний сформулируйте отрицание. Определите, что верно: утверждение или его отрицание.

1) Сумма двух двузначных чисел – двузначное число.

2) Сумма двух четных чисел – четное число.

3) Прямоугольник размером 20 х 15 можно разрезать на прямоугольники размером 3x5.

4) Квадрат размером 2015 х 2015 можно разрезать на прямоугольники размером 20 х 15.

5) В нашей школе найдутся два ученика, имеющие одинаковое число друзей среди учеников нашей школы.

6) * Через отверстие, прорезанное в листке из школьной тетради, человек пролезть не может.

Занятие 2

Урок русского языка, или «Все», «некоторые» и отрицание

…о великий, могучий, правдивый и свободный русский язык!

И. С. Тургенев. «Русский язык»

Предмет этого занятия – общие и частные высказывания. В формальной логике для их записи используют всего два квантора (квантор общности V и квантор существования 3). А в бытовом языке вместо кванторов используют самые разные слова, что порой приводит к недоразумениям. Задачи 2.1, 2.2 и 2.13 помогают разобраться в способах передачи кванторов общности и существования средствами русского языка.

Смысл общих и частных высказываний удобно иллюстрировать с помощью кругов Эйлера. Рекомендуем их использовать при обсуждении задач 2.3, 2.11, 2.12, 2.16, несмотря на то что для решения предложенных задач часть учеников в иллюстрациях не нуждается. Во-первых, другой части учеников картинка может существенно помочь. Во-вторых, навык работы с кругами Эйлера еще никому не повредил. Надеемся, что в задаче 2.16 удобство трех кругов оценят и те, кому два круга в предыдущих задачах казались излишним «наворотом». В-третьих, использование кругов Эйлера позволяет почувствовать родство логики и теории множеств.