Для научного познания наибольший интерес среди других видов определений представляют семантические и синтаксические определения, а также индуктивные и операциональные определения. Первые два типа определений применяются главным образом в лингвистике и семиотике, т.е. теории знаковых систем. В последние годы такие определения стали все больше использоваться в так называемых формализованных языках, которые применяются для построения алгоритмов и программ для компьютеров.
Семантическим называется определение, в котором некоторому знаку или термину ставится в соответствие определенный объект - реальный или абстрактный. Так, знаком Р обозначают свойство предмета, а функцией от одной переменной - кривую на плоскости. Любой знак приобретает смысл лишь тогда, когда его истолковывают с помощью какого-либо конкретного объекта. Исследование смысла терминов или слов языка составляет главную задачу как общей, так и логической семантики.
Синтаксические определения указывают или выделяет объект посредством установления правил оперирования с объектом. Например, мы можем определить нуль как натуральное число, которое, будучи прибавлено к любому числу, оставляет его неизменным, а при умножении превращает его в нуль.
Индуктивные определения обычно используются в математике для точного определения ряда основных понятий. В качестве примера рассмотрим определение понятия натурального числа, предложенное итальянским математиком Дж. Пеано:
1) "0" есть натуральное число;
2) если n - натуральное число, то следующее непосредственно за ним число и' также будет натуральным числом;
3) никаких других натуральных чисел, кроме тех, которые образуются с помощью правил 1 и 2, нет;
4) для любых натуральных чисел выполняется условие: если последующие их числа равны, т. е. m' = n', то равны и предыдущие числа, m = n. Наоборот, из условия m = n вытекает, что m' = n',
5) нуль не следует ни за каким натуральным числом.
В этом определении, с одной стороны, перечисляются способы образования натуральных чисел, а с другой - указываются свойства, которыми они обладают. Нередко сюда относят и принцип математической индукции.
В логике индуктивные определения используются для точного описания способов образования ее исходных объектов, например, какие формулы являются формулами исчисления высказываний или предикатов. Об этом речь пойдет в последующих главах.
Операциональные определения применяются главным образом в экспериментальных науках, в особенности в физике, а в последние годы к ним стали обращаться также в экспериментальной психологии и в микросоциологии. Обычно такие определения указывают на последовательность тех измерительных операций, которые надо осуществить, чтобы получить искомое значение конкретной величины, например силы тока или сопротивления проводника в физике, интенсивности ощущения - в психологии, чувства солидарности - в социальном коллективе и т.д. Не все логики признают такие определения полноценными. В лучшем случае, считают критики, таким образом определяются эмпирические понятия, которые не содержат абстрактных терминов. Действительно, когда определяется, например, длина, то речь идет не об абстрактном понятии длины вообще, а конкретной длине физического предмета. Тем не менее, операциональные определения играют важную роль при введении первоначальных, эмпирических понятий. Таким образом, они служат для установления связи между опытом и теорией, и поэтому могут быть использованы для обоснования и проверки абстрактных понятий, гипотез и теорий.
Наиболее известным и широко распространенным способом определения понятий, известным еще со времен Древней Греции, является определение через ближайший род (или класс) предметов, к которому относится определенный вид. Как показывает само название, для такого определения необходимо, во-первых, установить ближайший род (или класс) предметов, во-вторых, указать видовое отличие определяемого понятия. Так, чтобы определить понятие квадрата, можно указать несколько родов (или классов) геометрических объектов, в объем которых входит объем понятия квадрата. К ним относятся четырехугольники, параллелограммы, прямоугольники и ромбы. Ближайшими же родами служат ромбы и прямоугольники. Чтобы выделить квадраты среди ромбов и прямоугольников, следует указать их видовые (или специфические) признаки, которые по-латыни называются differentia specified. Поэтому квадрат можно определить, с одной стороны, как равносторонний прямоугольник, а с другой - как равноугольный ромб. Оба эти определения являются эквивалентными, так как выделяют тот же самый класс объектов, хотя в первом случае ближайшим родом служит множество прямоугольников, а во втором - множество ромбов.