Нетрудно понять, что такое представление о высказывании крайне упрощает дело и является абстракцией, но оно дает возможность лучше понять структуру рассуждений на простейшем уровне. В дальнейшем можно вносить уточнения, дополнения в эту структуру, чтобы выразить реальную внутреннюю связь между элементами высказываний. Как мы покажем в гл. 5, именно для этого строится логика предикатов, где в рассуждениях учитывается внутренняя структура высказываний. Указанный способ анализа дает возможность понять, как происходит переход от простых логических систем к сложным, посредством увеличения истинностных значений и введения дополнительных логических операций. Это относится прежде всего к числу истинностных значений высказываний. Наряду с привычными двумя значениями истинности (истина и ложь) классической логики в современной неклассической логике рассматривают несколько значений истинности, например "истинно", "ложно" и "неопределенно". В вероятностной (индуктивной) логике оперируют даже бесконечным количеством значений истинности, поскольку вероятность имеет непрерывную шкалу значений в интервале 0 ≤X≤1.
Кроме того, высказывания можно анализировать не по их истинностному значению, а оценивать с точки зрения обоснованности содержащегося в нем знания или отношения к нему познающего субъекта посредством модальных категорий. О них мы подробнее скажем в конце этой главы. Классическая двузначная логика является простейшей логической системой, в которой легче всего понять, как образуются сложные высказывания из простых и как определяются сами логические операции над ними.
3.3. Способы образования сложных высказываний
Сложные суждения образуются из простых двумя основными способами:
1) путем квантификации высказываний;
2) объединением простых или элементарных высказываний с помощью логических связок или операторов.
Первый способ представляет собой метод получения общих суждений путем использования логических кванторов, характеризующих объем суждения. Прежде чем перейти к его обсуждению, рассмотрим понятие функции-высказывания, которое играет важную роль в логике.
Высказывания в функции-высказывании оцениваются с точки зрения их истинностного значения, поэтому такая функция называется также истинностной функцией. Она образуется по аналогии с математической функцией, но в отличие от последней, аргументами в ней являются не числа и другие математические объекты, а логические объекты - высказывания. В связи с этим ее называют также пропозициональной функцией или - что менее благозвучно - высказывательной функцией. Значениями ее аргументов и самой функции являются "истина" и "ложь". Таким образом, здесь мы имеем дело с пропозициональной функцией двузначной классической логики.
Чтобы определить понятие пропозициональной функции, рассмотрим следующие примеры:
х - простое число; у - металл; z - студент.
По форме эти выражения напоминают высказывания, но они не определяют никакого конкретного высказывания, ибо содержат переменные, значение которых остается неизвестным. Здесь напрашивается аналогия с алгебраическими функциями или формулами, которые могут выражать конкретные арифметические зависимости. Так, например, линейная функция у = ax + в получает вполне определенное значение, если вместо постоянных и переменных подставляются конкретные числа.
Точно так же пропозициональные функции логики превращаются в конкретные высказывания, если вместо логических переменных подставляются определенные имена. Так, в первом примере, если вместо х подставить число 3, то получится истинное высказывание "3 - простое число". Если же вместо х подставляется число 4, то получится ложное высказывание "4 - простое число". Соответственно этому во втором примере, если вместо у подставить "железо", то получится истинное высказывание "железо-металл". Если вместо у подставляется "фосфор", то получится ложное высказывание "фосфор - металл".