Если формула (А ∧ ¬А) является всегда ложным высказыванием, то ее отрицание, выражающее требование непротиворечивости, напротив, будет всегда истинным высказыванием, общезначимой формулой, или тавтологией, как стали называть такие высказывания вслед за Л. Витгенштейном. Следует, однако, не смешивать языковые тавтологии с логическими. Если в языке тавтология означает повторение той же фразы или предложения текста, то в логике она является тождественно истинным высказыванием. Не следует также путать тождественно истинные высказывания с законом тождества, который выражается формулой А → А, хотя последняя также выражает тавтологию.
Отсюда становится ясным, что тавтологии (тождественно истинные высказывания) можно использовать для представления всех законов логики или любых общезначимых ее формул. Действительно, закон непротиворечия, запрещающий противоречия в рассуждении, можно выразить формулой ¬(A ∧ ¬A), которая представляет собой тавтологию, в чем можно убедиться, построив для нее соответствующую таблицу истинности (табл. 10). То же самое можно сказать о законе исключенного третьего - (A ∨ ¬A) (табл.11).
Если из противоречия следует все, что угодно, т.е. "истина" или "ложь", то и тавтология следует из любого истинного или ложного высказывания. В самом деле, если в каждой строке таблицы заключение всегда будет истинным, то по правилу импликации оно может быть получено как из истинных, так и из ложных посылок. Напротив, никогда ложное следствие (противоречие) не может быть получено из истинных посылок.
Промежуточное положение между всегда истинными высказываниями (тавтологиями), с одной стороны, и всегда ложными (противоречивыми) высказываниями, с другой, занимают фактуальные утверждения. Их заключения могут быть как истинными, так и ложными, в зависимости от тех фактов, на которые опираются их посылки. В то время как истинность тавтологий или ложность противоречий может быть установлена чисто логическим анализом этих высказываний, значение истинности фактуальных высказываний требует обращения к действительным фактам. Другими словами, чтобы установить истинность или ложность фактуальных высказываний, необходимо исследовать реальные связи и отношения действительности, которые отображаются в соответствующих высказываниях, служащих посылками фактуальных заключений. На этом основании фактуальные высказывания часто называют также эмпирическими в противоположность аналитическим высказываниям логики и чистой математики. Но это противопоставление имеет относительный характер, ибо и в научных, и в повседневных рассуждениях аналитические высказывания логики применяются вместе с эмпирическими утверждениями, поскольку именно из эмпирических законов мы выводим логические заключения.
Всю новую информацию в науке формулируют с помощью эмпирических (фактуальных) высказываний, а выводы из нее получают с помощью законов (правил) логического следования.
3.6. Доказуемость и выводимость
До сих пор при определении истинности или ложности сложных высказываний, состоящих из простых, мы опирались на таблицы истинности. Но этот способ неудобен, громоздок, особенно когда приходится иметь дело с большим числом простых высказываний. Напомним, что при двух простых высказываниях таблица истинности содержит четыре строки, при трех - восемь, а для 12 высказываний потребовалось бы уже 4096 строк. Вот почему в логике наряду с табличным методом часто используют метод, опирающийся на вывод и доказательство одних высказываний из других.
По своей сути этот метод весьма похож на метод доказательства теорем, который известен из школьной геометрии. Доказательство там сводилось к логическому выводу теорем из аксиом, а также из ранее доказанных теорем, которые принимались в качестве истинных утверждений геометрии. В конечном итоге всякое доказательство сводится к логическому выводу теорем из аксиом, так как ранее доказанные теоремы также можно логически вывести из аксиом. Таким образом, отличие доказательства от логического вывода состоит в том, что при доказательстве мы принимаем посылки в качестве истинных высказываний, а при логическом выводе - в качестве допущений или гипотез. Отсюда становится ясным различие между истинностью и правильностью рассуждения или мышления, о котором шла речь в гл. 1. Истинность утверждения предполагает, во-первых, истинность посылок, из которых оно выводится, и, во-вторых, правильность логического вывода. Вывод может быть сделан из любых допущений, в том числе из ложных.