Выбрать главу

Тем не менее представление суждений в виде высказываний, лишенных внутренней структуры и оцениваемых в целом как истинные и ложные, играет существенную роль в построении самой логики. Во-первых, некоторые простейшие виды рассуждений или умозаключений можно свести к исчислению, опирающемуся только на оценку истинностного значения высказываний. Во- вторых, такой подход является весьма полезным с методической точки зрения, ибо опираясь на него, можно по аналогии строить более сложное исчисление предикатов, в котором учитывается внутренняя логическая структура суждений. В-третьих, исчисление высказываний при таком подходе можно рассматривать, с одной стороны, как исходную базу для построения исчисления предикатов, а с другой - как частный случай исчисления предикатов. Наконец, в-четвертых, новое исчисление предикатов охватывает не только классическую логику с субъектно-предикатной структурой суждений, но позднее возникшую логику отношений.

Проверьте себя

1. Какие из перечисленных ниже предложений выражают суждения?

1) Кто сегодня дежурный.

2) Иванов - дежурный.

3) Сперва подумай, а потом отвечай.

4) Можно ли правильно ответить, не подготовившись к занятию?

5) Человека узнают не по речам, а по делам.

2. Определите качество и количество следующих суждений.

1) Один в поле не воин.

2) Кит не рыба.

3) Ромб - равносторонний параллелограмм.

4) Три девицы под окном пряли поздно вечерком.

5) Большинство студентов своевременно сдают зачеты.

6) Несколько дней он был болен.

3. Какие из следующих выражений будут функциями-высказываниями:

1) х - адвокат.

2) х + 5 = 12.

3) х >3.

4) 7 >5.

5) х - брат Миши; Георгий брат Миши.

6) Точка В лежит между точками А и С.

7) Точка Х находится левее точки А.

8) Кто-то вошел в дом; х причина у.

9) Утечка газа - причина взрыва.

4. Переведите следующие предложения на символический язык, обозначив каждое простое суждение буквой, а сложное суждение - формулой. Определите, какие из полученных формул выражают конъюнкцию, а какие дизъюнкцию.

1) "Долго ль мне гулять на свете то в коляске, то верхом, то в кибитке, то в карете, то в телеге, то пешком" (А. С. Пушкин).

2) "Однажды лебедь, рак и щука вести с поклажей воз взялись" (А. И. Крылов)

3) Знание и ремесло человека красят.

4) "Вот оно что, петушок красный гребешок, - сказал осел, - эх, ступай-ка ты лучше с нами, мы идем в Бремен, - хуже смерти все равно ничего не найдешь; голос у тебя хороший, и если мы примемся вместе с тобой за музыку, то дело пойдет на лад" (Братья Гримм).

5. Почему конъюнкцию опровергнуть легче, чем дизъюнкцию? Обоснуйте свой ответ и приведите примеры.

6. Переведите условные предложения на символический язык.

1) "Еще бы ты более навострился, когда бы у него немножко поучился" (И. А. Крылов).

2) "Заяц, ежели его бить, спички может зажигать" (А. Чехов).

3) Назвался груздем - полезай в кузов.

4) Диаметр делит круг пополам.

5) Если треугольник равнобедренный, то углы при его основании равны.

7. С помощью таблиц истинности определите истинностное значение следующих формул:

1) (А Λ В) → В;

2) ¬(Л v 5);

3) (А → В) v В; А v (¬5 Λ В).

8. Являются ли эквивалентными следующие формулы:

1) (х → у) и (¬у → ¬х); ¬(х v у) и (¬х Λ ¬у);

2) (х → у) и (у → х; ¬х и (¬(¬х).

9. С помощью таблиц истинности проверьте, являются ли тавтологиями следующие формулы:

1) (А v В) → А;

2) (А → В) → (¬A v B);

3) (А Λ В) → (В Λ А); А v А; А v В.

10. Является ли конъюнкция (А → В) Λ (А Λ ¬В) противоречием?

11. Чем отличаются фактуальные высказывания от тавтологий и противоречий? Определите, какие из формул являются тавтологиями, противоречиями и фактуальными (эмпирическими) суждениями?

1) А → А; (А v В);

2) А v ¬B;

3) (А → В) → (В Λ ¬А);

4) (А В) (В → А);

5) А Λ А.

12. Как определить, следует ли формула исчисления высказываний В из формулы А1 Приведите примеры.

13. Проверьте правильность вывода в следующих формулах:

1) 2) 3)

14. Если возможно, то сделайте обращение следующих суждений

1) Все кошки - млекопитающие.

2) Все прямоугольники - четырехугольники.

3) Все квадраты - равносторонние прямоугольники.

4) Некоторые студенты не изучают логику.

5) Некоторые студенты - спортсмены.

15. Какое различие существует между обращением таких суждений?

1) Все треугольники - геометрические фигуры.