Следовательно логику можно определить как науку о рациональных методах рассуждений, которые охватывают как анализ правил дедукции (вывода заключений из посылок), так и исследование степени подтверждения вероятностных или правдоподобных заключений (гипотез, обобщений, предположений и т.д.).
Традиционная логика, которая сформировалась на основе логического учения Аристотеля, дополнилась в дальнейшем методами индуктивной логики, сформулированными Ф. Бэконом и систематизированными Дж.С. Миллем. Именно эта логика в течение долгого времени преподавалась в школах и университетах под именем формальной логики.
Возникновение математической логики коренным образом изменило отношение между дедуктивной и недедуктивной логиками, которое существовало в традиционной логике. Это изменение было сделано в пользу дедукции. Благодаря символизации и применению математических методов сама дедуктивная логика приобрела строго формальный характер. По сути дела, такую логику вполне правомерно рассматривать как математическую модель дедуктивных умозаключений. Нередко поэтому ее считают современной ступенью развития формальной логики, но забывают при этом добавить, что речь идет о дедуктивной логике.
Нередко также говорят, что математическая логика сводит процесс рассуждения к построению различных систем исчислений и тем самым заменяет естественный процесс мышления вычислениями. Однако модель всегда связана с упрощениями, поэтому она не может заменить оригинал. Действительно, математическая логика ориентируется прежде всего на математические доказательства, следовательно, абстрагируется от характера посылок (или аргументов), их обоснованности и приемлемости. Она считает такие посылки заданными или ранее доказанными.
Между тем в реальном процессе рассуждения, в споре, дискуссии, полемике анализ и оценка посылок приобретает особо важное значение. В ходе аргументации приходится выдвигать определенные тезисы и утверждения, находить убедительные доводы в их защиту, исправлять и дополнять их, приводить контраргументы и т.д. Здесь приходится обращаться уже к неформальным и недедуктивным способам рассуждений, в частности к индуктивному обобщению фактов, выводам по аналогии, статистическому анализу и т.д.
Рассматривая логику как науку о рациональных способах рассуждений, мы не должны забывать о других формах мышления - понятиях и суждениях, с освещения которых начинается любой учебник логики. Но суждения и тем более понятия играют вспомогательную роль в логике. С их помощью становится более ясной структура умозаключений, связь суждений в различных видах рассуждений. Понятия же входят в структуру любого суждения в виде субъекта, т. е. предмета мысли, и предиката - как признака, характеризующего субъект, а именно утверждающего наличие или отсутствие у предмета мысли определенного свойства. В нашем изложении мы придерживаемся общепринятой традиции и начинаем обсуждение с анализа понятий и суждений, а затем более подробно освещаем дедуктивные и недедуктивные способы рассуждений. В главе, где анализируются суждения, рассматриваются элементы исчисления высказываний, с которых обычно открывается любой курс математической логики.
Элементы логики предикатов освещаются в следующей главе, где в качестве частного случая рассматривается теория категорического силлогизма. Современные формы недедуктивных рассуждений нельзя, очевидно, понять без четкого разграничения логической и статистической интерпретации вероятности, поскольку под вероятностью подразумевается чаще всего как раз ее статистическое истолкование, которое имеет вспомогательное значение в логике. В связи с этим в главе, посвященной вероятностным рассуждениям, мы специально останавливаемся на выяснении различия между двумя интерпретациями вероятности и более подробно разъясняем особенности логической вероятности.
Таким образом, весь характер изложения в книге ориентирует читателя на то, что дедукция и индукция, достоверность и вероятность, движение мысли от общего к частному и от частного к общему не исключают, а скорее дополняют друг друга в общем процессе рационального рассуждения, направленного как на поиск истины, так и ее доказательство.