Р(Н/Е) = с.
Относительно определения степени вероятности правдоподобного рассуждения мнения исследователей расходятся. Известный английский экономист Дж. M. Кейнс, написавший первый трактат по логической вероятности, считал, что эта степень может быть определена численно только в немногих случаях, чаще всего приходится иметь дело со сравнением одних вероятностей с другими, в некоторых случаях даже такое сравнение оказывается невозможным.
Другой автор системы вероятностей логики X. Джефрис считал логическое понятие вероятности основополагающим, с помощью которого можно определить даже статистическую вероятность. Более осторожную и убедительную позицию занимал известный австрийский логик Р. Карнап, который признавал самостоятельность двух интерпретаций вероятности, каждая из которых имеет свою область применения. Объективная интерпретация анализирует относительную частоту появления массовых случайных событий, интерсубъективная, т.е. логическая вероятность устанавливает вероятностное логическое отношение между посылками и заключением правдоподобного рассуждения. Поскольку в логике чаще всего приходится встречаться с индуктивными рассуждениями, как типичными видами правдоподобных рассуждений, логическую вероятность часто называют индуктивной вероятностью. В связи с этим иногда индуктивное рассуждение истолковывается слишком широко: все недедуктивные рассуждения рассматриваются как индуктивные, но такой подход, как мы покажем ниже, вряд ли обоснован.
Таким образом, статистическая и логическая вероятности одинаково необходимы и полезны для успешной научной и практической деятельности. Не говоря уже о широком использовании статистической вероятности для анализа массовых случайных событий, в последние годы это понятие получило широкое применение всюду, где приходится принимать решения. Ведь чтобы принять правильное решение, необходимо учитывать наряду с его полезностью также возможность или вероятность его осуществления в конкретной ситуации. Если имеется статистическая информация, тогда для этого используется статистическая вероятность. Когда же статистика отсутствует или в принципе невозможна, то обращаются к логической вероятности, т.е. устанавливают отношение между фактами, свидетельствами и другими данными и гипотезой, определяя степень подтверждения гипотезы фактами. Все это показывает плодотворность взаимодополнения статистической и логической вероятностей, эмпирического и теоретического определения вероятности.
Эмпирическое измерение вероятности основано на определении относительной частоты случайных событий. Если нам будут известны начальные или исходные вероятности, то по математическим законам теории вероятностей мы можем найти вероятность образованных из них сложных или совокупных событий: объединения, пересечения, дополнения. В модифицированном виде аппарат теории вероятностей применим также к логическим вероятностям, но здесь определение первоначальных вероятностей наталкивается на серьезные трудности, поскольку степень подтверждения не всякой гипотезы можно определить численно. Тем не менее даже использование понятий "больше", "меньше" и "равно" дает более точное знание, чем чисто интуитивные соображения о степени подтверждения правдоподобных рассуждений в случае индукции или аналогии.
5.2. Основные формы индуктивных рассуждений
Когда мы определяем индуктивное рассуждение по характеру его заключения, то относим его к более широкому классу вероятностных (или правдоподобных) рассуждений. Но это определение нуждается в указании специфического, видового признака, характерного именно для индукции, в отличие от других правдоподобных рассуждений, например аналогии. В прежней логике существовала традиция рассматривать индукцию как рассуждение, направленное от частного к общему. Частные случаи служили для наведения мысли на истину, но не гарантировали ее достижение. В отличие от этого дедукция направлена в противоположную сторону - на переход от общего знания к частному, перенос истины с посылок на заключение. Несмотря на неудовлетворительность Указанного различия дедукции и индукции с современной точки зрения, все же в нем присутствует немалая доля истины, тем более что современные представления складывались на основе уточнения и совершенствования прежних взглядов. В связи с этим нам кажется вполне правомерным рассматривать такие формы индуктивных рассуждений, как полная и математическая индукция, именно в разделе об индуктивных рассуждениях, хотя заключения, основанные на них, являются достоверно истинными. Подобный подход оправдывается тем, что движение мысли здесь начинается от частного и направлено к общему. А именно с этим традиционная логика связывала индукцию и отличала ее от дедукции.