an = а1 + (n - 1) d.
Фаза доказательства должна продемонстрировать, что если формула верна для некоторого члена an, то она будет верна и для an+1. Для этого достаточно прибавить к предыдущему члену а знаменатель прогрессии а, тогда получим: an+1 = a1+d (n - 1) + d = an+nd . Если формула, как мы непосредственно убедились, верна для а1 = 1, то по доказанному она верна для а2 = 3, а3 = 5 и т.д. Таким образом, наше предположение верно для всех целых чисел, из которых состоит данная прогрессия.
Тот факт, что математическая индукция начинается с некоторого предположения (или гипотезы), сближает ее с индуктивными рассуждениями, но, так как предположение подкрепляется доказательством, основанным на переходе от an к an+1, это придает ей доказательный характер.
Следовательно, в математической индукции органически сочетаются индукция с дедукцией, предположение - с доказательством. Поэтому она находит такое широкое применение в математике. В ней догадка, открытие всегда сопровождается обоснованием и доказательством, а это требует, с одной стороны, приобретения опыта в умении догадываться, открывать новые соотношения, а с другой - овладения техникой математического доказательства.
Кроме полной и математической индукции, которые приводят к достоверным заключениям, все остальные формы индукции лишь наводят на истину, и потому их результаты имеют лишь проблематический (вероятностный) характер. Это иногда служит основанием для недооценки их роли в научном познании. Между тем стоит лишь задуматься над вопросом, откуда берутся общие посылки для дедуктивных умозаключений, как сразу же вспоминают о движении познания от частного к общему, а это и есть индукция в общепринятом смысле слова.
Под обобщающей индукцией понимают такой процесс рассуждения, в котором от знания определенных предметов некоторого класса переходят к знанию о классе в целом, т.е. переносят знание, установленное путем исследования некоторой части класса, на весь класс, в том числе на неисследованные его части. Другими словами, рассуждение в этом случае совершается от частного к общему, и поэтому переход получил название обобщающей индукции.
В традиционной логике именно подобной индукции противопоставлялась дедукция, как переход от знания общего к частному. Хотя с современной точки зрения такое противопоставление, как мы видели, оказывается несостоятельным, тем не менее оно верно подмечает различие между типичными индуктивными обобщениями и дедуктивными умозаключениями. В этом смысле даже полная и математическая индукции могут с известными оговорками рассматриваться как особые случаи обобщающей индукции, поскольку ход рассуждения в них является типично индуктивным, основанным на исследовании некоторых частных случаев и переносе открытого в результате этого знания на весь их класс в целом. Однако к типичным видам индуктивного обобщения относят различные формы неполной индукции, когда заключение имеет не достоверный, а лишь правдоподобный (вероятностный) характер. При этом степень вероятности заключения зависит от глубины и тщательности исследования тех конкретных случаев, на которые опирается индуктивное обобщение. Соответственно можно выделить несколько видов индуктивного обобщения.