Вопрос о применении закона исключенного третьего еще со времени Аристотеля вызывал споры. Сам философ считал его применимым лишь для характеристики настоящих и прошлых событий, так как человек может определить истинность и ложность только таких событий. Вопрос об истинности будущих событий остается неопределенным. По-видимому, Аристотель и его предшественники вывели этот закон из наблюдения свойств конечных множеств событий. Когда математики обратились к исследованию свойств бесконечных множеств, то вынуждены были признать, что если бесконечность рассматривается как неограниченный процесс построения каких-либо объектов, например, чисел натурального ряда 1, 2, 3..., то к ним принцип исключенного третьего оказывается неприменимым. В самом деле, суждение "В данном бесконечном ряду не существует объекта со свойством Р, т.е. Р(х)" было бы истинным только тогда, когда существовала бы возможность проверить бесконечный ряд целиком. Но именно подобным образом рассуждают сторонники классической (или теоретикомножественной) математики, когда рассматривают бесконечное множество по аналогии с конечными множествами, т.е. как завершенное, актуальное множество. С такой точки зрения натуральный ряд чисел представляется как уже заданный, готовый, а не возникающий в процессе прибавления единицы к предшествующему числу.
Для чего понадобилась эта идеализация? Оказывается для того, чтобы сохранить все законы аристотелевской (классической) логики и для бесконечных множеств. Однако подобный упрощенный подход привел в дальнейшем к парадоксам теории множеств, в связи с чем противники классиков - интуиционисты и конструктивисты - отказались от применения закона исключенного третьего. На этой основе возникла особая - конструктивная логика, отличающаяся от классической тем, что в ней не используется закон исключенного третьего.
Трудности с применением данного закона возникли также в квантовой механике, изучающей законы движения микрочастиц материи, где потребовалось ввести закон исключенного четвертого.
Приведенные примеры из современной науки ясно показывают, что прежде чем применить закон исключенного третьего к конкретным областям научного знания или даже к повседневной практике, необходимо убедиться, подходит ли он для данного случая, не вносит ли путаницу и не приводит ли к ошибочным выводам.
Следовательно, важно разобраться, как соотносятся между собой законы противоречия и исключенного третьего, какую роль они играют в логическом анализе рассуждений в речи или тексте. Заметим, что принцип противоречия имеет более общий характер, ибо устанавливает, что два противоречащих суждения не могут быть одновременно истинными, но не указывает что одно из них должно быть истинным, а другое ложным. Поэтому он применяется и к контрарным, и контрадикторным суждениям. Как известно, общеутвердительные и общеотрицательные суждения являются контрарными, т.е. допускают существование суждений, занимающих промежуточное положение между ними. Например, суждения "все экстрасенсы приносят пользу людям" и "ни один экстрасенс не приносит пользу" предполагают существование частноутвердительного суждения "некоторые экстрасенсы приносят пользу людям". Итак, когда мы имеем дело с противоречием, то в результате его анализа всегда можно выделить некоторое суждение, характеризующее промежуточное состояние, степень свойства, признака и т.п. Другими словами, члены такого противоречия не только отрицают друг друга, но и предполагают существование третьей возможности.