Здесь надо различать три случая. 1) Если противоположность контрарная, т. е. оба высказывания – общие, то они могут оказаться оба сразу ложными.
Рассмотрим два высказывания: «все планеты имеют атмосферу» и «ни одна планета не имеет атмосферы». Противоположность между ними – контрарная, так как утверждение и отрицание здесь – высказывания общие. В этом примере оба высказывания – ложные. Ложно и то, что «все планеты имеют атмосферу», ложно и то, что «ни одна планета не имеет атмосферы». Истина здесь состоит в третьем, а именно в том, что часть планет (например, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун) имеет атмосферу, другая же часть (например, Меркурий) её не имеет.
Почему в случае контрарной противоположности оба противоположных высказывания могут, как и в этом нашем примере, оказаться оба сразу ложными?
Происходит это потому, что контрарная противоположность – самая крайняя из всех возможных. Если один утверждает, что все планеты имеют атмосферу, а другой, – что ни одна планета не имеет атмосферы, то нельзя представить себе между обоими этими высказываниями противоположность большую, чем та, какую они выражают.
Однако два контрарных высказывания могут оказаться оба сразу ложными. Они будут оба сразу ложными, если между крайними случаями, которые выражаются обоими контрарными высказываниями, имеются случаи, образующие переход между ними, стоящие посередине. Между крайними утверждениями «все планеты имеют атмосферу» и «ни одна планета не имеет атмосферы» возможно третье утверждение: «некоторые планеты имеют атмосферу, а некоторые не имеют её».
Из того, что два контрарных высказывания могут оба сразу оказаться ложными, отнюдь не следует, что они во всех случаях, всегда и непременно окажутся ложными. Возможны и такие случаи, когда одно из контрарных высказываний – ложное, а другое – истинное. Так, из двух контрарных высказываний – «все планеты солнечной системы вращаются вокруг солнца» и «ни одна планета солнечной системы не вращается вокруг солнца» – первое истинно, а второе ложно.
Контрарные высказывания не бывают оба сразу ложными в случаях, когда противоположность, выражаемая общими высказываниями, может быть только крайней, т. е. когда между обоими крайними случаями, выражаемыми в обоих высказываниях, нет в действительности переходных случаев.
§ 19. 2) Если противоположность между двумя высказываниями противоречащая, т. е. одно из высказываний – общее, а другое – частное, то такие два высказывания не могут оказаться оба сразу ложными. В этом случае вступает в силу третий закон логического мышления – закон исключённого третьего.
Согласно этому закону из двух противоречащих друг другу утверждений об отношении двух понятий одно утверждение – и только одно – необходимо должно быть истинным, так что невозможно никакое третье истинное утверждение об отношении, между этими понятиями.
Так, из противоречащих друг другу утверждений об отношении понятий «дельфины» и «млекопитающие», а именно – «все дельфины – млекопитающие», «некоторые дельфины – не млекопитающие» – одно необходимо должно быть истинным. Или истинно, что «все дельфины – млекопитающие», или истинно, что «некоторые (т. е. по крайней мере некоторые) дельфины – не млекопитающие».
Так как, по закону противоречия, два противоречащих друг другу утверждения не могут быть оба сразу истинными, то истинность одного из таких утверждений означает ложность другого и – наоборот. Но этого мало. Закон исключённого третьего не только говорит, что одно из противоречащих утверждений необходимо должно быть истинным. Закон исключённого третьего говорит, кроме того, что истина лежит только в пределах этих двух утверждений. Кроме этих двух утверждений невозможно никакое третье об отношении между теми же понятиями, которое было бы истинным. В случае противоречащих суждений рассуждать приходится по схеме: «или – или. Третье не дано» (tertium non datur).
Закон исключённого третьего называется так потому, что законом этим исключается истинность какого бы то ни было третьего высказывания, кроме наших двух – утверждения и отрицания, между которыми мы и должны сделать выбор.
Законом исключённого третьего обосновывается требование, которое может быть выражено так: выбирай одно из двух противоречащих друг другу высказываний, так как одно из них непременно должно быть истинным и так как не существует никакого третьего, которое могло бы оказаться истинным вместо этих двух.