§ 26. Так же, как и рассмотренные уже логические законы мышления, закон достаточного основания может быть выражен общей формулой, а именно: «если есть В, то есть как его основание — А».
Формула эта означает, что закон достаточного основания выражает не только обусловленность наших истинных мыслей, но и обусловленность действительных фактов и событий. Ни один факт не может иметь место, ни одно событие не может наступить, если они причинно не обусловлены другими фактами и другими событиями. Ни одна мысль не может быть признана истинной, если нет достаточного основания для её истинности в других истинных мыслях. При этом истинной может быть только та мысль, которая правильно отражает действительные факты.
§ 27. Значение закона достаточного основания становится сразу очевидным во всех случаях, когда этот закон нарушается. Одной из возможных логических ошибок является ошибка, состоящая в том, что за основание вывода или утверждения принимается то, что таким основанием служить не может. Так, простое следование во времени двух событий одного за другим — как бы часто оно ни повторялось — само по себе не может быть достаточным основанием для утверждения, будто предшествующее событие есть причина, а следующее за ним — действие. Допустим, что мы множество раз видели, как вслед за рассветом восходило солнце. Это наблюдение не может быть достаточным основанием для того, чтобы утверждать, что рассвет есть причина восхода солнца, что эта связь событий — необходимая и что она должна постоянно повторяться также и во всех других случаях. Чтобы решить вопрос, действительно ли данное явление есть причина другого, за ним следующего, необходимо произвести особое исследование, основывающееся не только на наблюдении простого повторения последовательности двух явлений. Логика устанавливает правила таких исследований — в учении об индукции.
§ 28. Четыре логических закона мышления — закон тождества, закон противоречия, закон исключённого третьего и закон достаточного основания — применяются во всех действиях, или операциях, мышления. Во всех рассуждениях, доказательствах и выводах, всюду, где противопоставляются суждения, где мыслятся понятия, правильное мышление происходит согласно логическим законам мышления.
При этом в каждой особой операции мышления логические законы обычно применяются не только каждый в отдельности, но и совместно. Так как определённость, различие и обусловленность всех предметов мысли являются не изолированными чертами этих предметов, но друг друга предполагают, то в соответствии с этим и основные черты логического мышления — определённость, последовательность и доказательность, — выражаемые логическими законами тождества, противоречия, исключённого третьего и достаточного основания, связаны между собой и друг друга предполагают. Так, в доказательстве теоремы выступают — в качестве необходимых логических условий доказательства — кроме закона достаточного основания, выражающего условие доказательности в собственном смысле слова, также и другие логические законы мышления: закон тождества, закон противоречия и закон исключённого третьего. И действительно, без соблюдения закона тождества невозможно было бы усматривать какую бы то ни было необходимую связь между понятиями, входящими в доказательство: одно и то же понятие, появляясь дважды или несколько раз в рассуждениях, не было бы тождественным, т. е. не было бы понятием о том же самом предмете, мыслимом по одним и тем же признакам. Далее, без соблюдения логических законов противоречия и исключённого третьего не существовало бы никакой непреложной необходимости, признав истинными исходные положения, на которые опирается как на своё основание доказательство, признавать истинными те положения, которые из них следуют: только закон противоречия объясняет, почему невозможно, признав истинным известное исходное положение, одновременно признать истинным противоречащее ему заключение. И только закон исключённого третьего объясняет, почему, придя к убеждению в ложности известного утверждения (как это имеет место в некоторых доказательствах), мы тем самым оказываемся вынужденными признать истинность противоречащего ему утверждения.
Глава III. Учение о понятии
Связь понятия с суждением