Ошибка, состоящая в том, что неполный обзор экземпляров класса или видов рода принимается за исчерпывающий и потому рассматривается как основание для общего вывода о всём классе или обо всём роде, встречается часто. В таких случаях полная индукция оказывается мнимой полной индукцией, а её общее заключение часто оказывается ошибочным. Уверенность, что род исчерпывается всеми известными в настоящее время его видами или класс — всеми известными доселе экземплярами, часто не имеет достаточного основания.
§ 13. Указанными чертами полной индукции определяется и область её применения и её значение для знания. Полная индукция не даёт знания о других предметах, кроме тех, которые поочерёдно перечислены в частных посылках. Так, общий вывод о конических сечениях в нашем первом примере полной индукции не распространяется ни на какие новые предметы сравнительно с теми, о которых шла речь в частных посылках. Тот предикат, который каждая отдельная посылка повторно высказывала о круге, об эллипсе, о параболе и о гиперболе, не переносится в заключении ни на какие иные или новые кривые, кроме перечисленных. В этом смысле, т. е. по отношению к количеству предметов, на какие переносится общий вывод, полная индукция не даёт нового знания сравнительно с тем знанием, каким мы располагали в посылках.
Однако, не распространяясь на новые предметы, общий вывод полной индукции характеризует те же самые, предметы с некоторой новой стороны. Субъектом суждения в каждой частной посылке был каждый отдельный предмет класса (или отдельный вид рода) в качестве именно отдельного и только отдельного предмета или вида. Напротив, в общем заключении субъектом суждения оказываются те же предметы, но уже рассматриваемые в качестве не отдельных, а в качестве некоторого класса или некоторого рода, т. е. в качестве некоторой логической группы. Поэтому умозаключение полной индукции не есть пустое повторение в форме общего вывода того, что уже сполна мыслилось в частных посылках.
Научная ценность выводов полной индукции зависит от того, будут ли частные посылки, обосновывающие вывод, суждениями об отдельных предметах класса или о видах рода. Если частные посылки представляют суждения об отдельных предметах класса, то общий вывод, согласно сущности полной индукции, возможен лишь при условии, когда перечислены и рассмотрены все экземпляры, из которых состоит класс. В таких выводах число экземпляров класса, очевидно, должно быть ограниченным, так как обзор экземпляров должен быть исчерпывающим. Поэтому выводы в этом случае представляют меньшую ценность для знания.
Но если частные посылки, обосновывающие вывод, представляют суждения о видах, то ограниченность числа видов, из которых состоит род, не препятствует тому, чтобы общая сумма экземпляров, составляющих род, была неисчислимо большой. Хотя имеется всего четыре вида конических сечений, но так как каждый из них обнимает бесчисленное множество экземпляров, то и вся группа конических сечений, на которую в выводе переходит предикат частных посылок, будет группой, состоящей из бесчисленного множества экземпляров. Такие выводы, в которых известное общее свойство группы может быть отнесено к каждому из неисчислимо большого количества членов этой группы, представляют бо́льшую ценность для знания, чем выводы о группе, состоящей из ограниченного числа экземпляров.
Умозаключение от принадлежности предиката каждому из видов рода в отдельности к принадлежности этого же предиката целому роду часто применяется в доказательствах математических наук. При помощи полной индукции геометрия доказывает теорему, согласно которой всякий угол, вписанный в круг, измеряется половиной центрального угла, опирающегося на ту же дугу. Геометрия доказывает, что положение это справедливо, во-первых, для случая, когда центр круга лежит между сторонами вписанного в круг угла, во-вторых, для случая, когда центр круга лежит на одной из сторон вписанного в круг угла, и, в-третьих, когда центр круга лежит вне обеих сторон вписанного в круг угла (см. рис. 65).
Рис. 65
Так как этими тремя случаями исчерпываются все возможные виды понятия вписанного в круг угла и так как доказанное положение оказывается справедливым относительно каждого из видов рода в отдельности, то отсюда геометрия заключает по методу полной индукции, что положение это будет справедливо и относительно всего рода, т. е. относительно всякого вписанного в круг угла.