§ 18. Неполная индукция существенно отличается от полной. То новое знание, которое даёт полная индукция, не есть знание о новых предметах, сверх тех, которые были рассмотрены в посылках. Полная индукция даёт знание не о новых предметах, а о новой стороне тех предметов, которые были рассмотрены в посылках и которые характеризуются в выводе уже не в качестве отдельных, но как целый класс или как логическая группа.
Напротив, неполная индукция даёт в выводе знание о новых предметах помимо тех, которые уже были рассмотрены в посылках. Свойство, которое эти посылки утверждают относительно части класса или рода, вывод неполной индукции переносит на целый класс или род.
Неполной индукция этого типа называется именно потому, что в посылках заведомо рассматривается только некоторая часть всех случаев или экземпляров класса, в то время как вывод делается относительно целого класса, представляющего полную сумму всех этих случаев или экземпляров.
На каком же основании возможен здесь общий вывод? Что даёт нам право, рассмотрев только несколько случаев или предметов известного класса и найдя, что всем им принадлежит — каждому в отдельности — известное свойство, утверждать в выводе, что это же свойство принадлежит всему классу?
Таким обоснованием не может быть простое перечисление каких попало случаев или рассмотрение каких попало экземпляров, наудачу или произвольно выхваченных из всего класса. Если общий вывод о целом классе получился в результате рассмотрения только некоторой части случайно встретившихся экземпляров класса, то совершенно очевидно, что положение, оказавшееся верным во всех этих случаях, не может быть достаточным основанием для общего вывода. Если я иду по улице и если три первых прохожих, встретившиеся мне на пути, случайно оказались стариками, то этого ещё недостаточно для заключения, будто и все остальные прохожие, которые встретятся мне на продолжении моего пути, также будут стариками.
Неполная индукция через простое перечисление
§ 19. Но, может быть, основанием для вероятности общего вывода является отсутствие фактов или случаев, противоречащих обобщению? Может быть, вероятность общего вывода основывается не только на том, что мы знаем несколько случаев или фактов, подтверждающих наше обобщение, но также и на том, что мы не знаем ни одного случая и ни одного факта, которые противоречили бы этому обобщению?
Конечно, отсутствие фактов или случаев, противоречащих общему заключению из нескольких частных фактов, подтверждает вероятность обобщения. Если мы знаем некоторое число фактов, согласующихся с обобщением, но в то же время знаем также и о существовании других фактов того же рода, идущих вразрез с обобщением, то мы не можем признать факты, совпадающие с обобщением, за основание для вероятного общего вывода. Единственного факта, несовместимого с содержанием обобщающего вывода, достаточно для того, чтобы вывод этот был решительно отвергнут как ошибочный. И действительно, вывод притязает быть общим, т. е. предполагает, что известное положение верно относительно целого класса, существование же фактов, противоречащих выводу, доказывает, что вывод в действительности верен лишь относительно части класса, т. е. не есть общий.
Индуктивный вывод, в котором общее заключение делается только на основании всего лишь части всех случаев или фактов, согласующихся с обобщением, при условии незнания ни одного случая или факта, которые противоречили бы обобщению, называется индукцией через простое перечисление. Полное название индукции этого типа — индукция через простое перечисление, в котором не встречается противоречащего случая.
§ 20. Индукция через простое перечисление — самый ненадёжный вид неполной индукции. Если единственным основанием для вероятности общего вывода является незнание случаев, противоречащих обобщению, то вероятность вывода должна быть признана слабо обоснованной. В этом случае наличие вероятности может оказаться зависящим только от нашего незнания. Сегодня мы не знаем ни одного факта, противоречащего моему обобщению из частных фактов, и постольку наше обобщение ещё может быть признано нами вероятным. Но стоит мне завтра встретиться хотя бы с одним фактом, несовместимым с обобщением, — и моё обобщение тотчас становится из вероятного попросту ложным.