(a/c)2+(b/c)2 = 1. (2)
Осуществив требуемое формулой (2) возведение a/c и b/c — в квадрат, получаем:
a2/c2 + b2/c2 = 1. (3)
Помножая обо части уравнения (3) на с2, имеем: а2 + b2 = с2 (4), т. е. формулу теоремы Пифагора.
В истории разработки науки весьма многие положения были сначала найдены путём регрессивного доказательства. Часто догадка об истине, предвосхищение истины предшествовали той форме доказательства, при которой доказываемый тезис получается как итог длинного ряда выводов, направляющихся от оснований к доказываемому положению. В этих случаях доказательство принимает регрессивную форму. Исследователь, «предчувствуя» истинность тезиса, направляет своё внимание на то, чтобы уяснить необходимую связь, существующую между тезисом и другими истинами, ранее познанными из других оснований.
§ 30. Математические доказательства могут быть различаемы в зависимости от того, доказывается ли тезис прямо или же путём опровержения суждения, противоречащего доказываемому тезису. Доказательство, в котором тезис прямо выводится из других суждений, установленных или принятых в качестве истинных, называется прямым.
Доказательство, в котором для обоснования тезиса опровергается суждение, противоречащее тезису, называется косвенным. Из этого определения видно, что к косвенным доказательствам принадлежит уже известное нам апагогическое доказательство.
Апагогическое доказательство называется также «reductio ad absurdum»1, т. е. «приведением к нелепости». Название это указывает, что выводы из допущения, принятого в начале апагогического доказательства, извлекаются до тех пор, пока не дойдут до вывода, который оказывается нелепым, так как противоречит другим — истинным — посылкам.
Нетрудно заметить, что в ходе этого доказательства применяется модус tollens, а также закон исключённого третьего. В самом деле: ложность допущенного положения выводится из ложности следствия, к которому это допущение приводит, т. е. по модусу tollens, а истинность доказываемого тезиса выводится из ложности допущенного положения, которое стоит в отношении противоречащей противоположности к тезису и потому, оказавшись ложным, тем самым доказывает, согласно закону исключённого третьего, истинность тезиса.
В математике апагогические доказательства называются «доказательствами от противного». Название это, с точки зрения логической терминологии, не совсем точно, так как в доказательствах этих опровергается не противное по отношению к доказываемому тезису, но именно противоречащее допущение.
Опровержение
§ 31. Опровержение, как мы уже знаем, по существу не отличается от доказательства. Опровержение состоит либо в доказательстве того, что посылки ошибочны или сомнительны, либо в доказательстве того, что вывод не вытекает с необходимостью из данных посылок, хотя бы каждая из них в отдельности была истинной. При этом для опровержения не требуется, чтобы посылки были непременно ложными: достаточно, чтобы они были только сомнительными — и вывод уже не имеет доказательной силы.
Опровержение известного утверждения, т. е. доказательство ложности его по существу, есть в то же время опровержение всякого доказательства этого утверждения, каковы бы ни были применяемые при этом формы доказательства.
Но опровержение данного доказательства, т. е. обнаружение его несостоятельности, не есть ещё опровержение того тезиса, или утверждения, которое должно было быть обосновано посредством этого доказательства. Вполне возможен случай, когда тезис по существу истинен, но доказательство, при помощи которого его пытаются обосновать, ошибочно. Ошибочным оно может быть или потому, что пытаются вывести его из ложных оснований, или же потому, что, несмотря на истинность оснований, не умеют показать, какова необходимая связь, ведущая от этих оснований к тезису.
Поэтому обнаружение несостоятельности доказательства не есть ещё обнаружение ложности доказываемого положения. Так как одно и то же положение может быть доказываемо, вообще говоря, не одним единственным, а несколькими способами, возможен случай, когда, опровергнув несостоятельное доказательство, указывают затем истинное, при помощи которого тезис действительно может быть доказан.