Подобные случаи наблюдаются и в практике повседневного мышления и в развитии науки. Бывает, что неискусный спорщик отстаивает верное по существу положение, но неспособен найти надлежащее доказательство, которое привело бы к очевидности доказываемый им тезис. Но и в истории наук, даже таких точных, как математика, не раз бывало, что в доказательствах, которые ранее считались безупречно строгими, со временем — по мере уточнения понятий — обнаруживались неточности, и тогда эти доказательства исправлялись, т. е. заменялись более строгими, действительно раскрывающими необходимую связь между основаниями и тезисами.
Основания как части доказательств
§ 32. Рассматривая доказательства любой математической науки, нетрудно заметить, что все истинные положения этой науки образуют как бы длинную цепь, в которой каждый доказываемый тезис опирается на ранее доказанные основания, а эти основания в свою очередь доказываются как тезисы — из других оснований и т. д.
Однако это восхождение от тезисов к основаниям и от этих оснований, рассматриваемых как тезисы, к другим основаниям не может продолжаться до бесконечности. Раньше или позже мы дойдём до таких положений, которые уже не могут быть доказаны с помощью других оснований и которые сами являются основаниями, посредством которых доказываются — прямо или косвенно — все без исключения положения и теоремы данной науки.
Прямое участие этих оснований в доказательствах заключается в том, что положения эти применяются при доказательстве некоторых теорем в качестве единственных оснований, на которые опирается доказательство этих теорем. Так, в геометрии первые теоремы этой науки доказываются не на основании других теорем, а на основании определений основных понятий геометрии и на основании некоторых аксиом, или постулатов, которые уже нигде далее не доказываются.
Косвенное участие этих оснований в доказательствах заключается в том, что теоремы, доказываемые при помощи одних только этих оснований, в свою очередь служат основаниями для доказательства других положений и теорем данной науки.
Так как эти основания являются для каждой математической науки основаниями, уже невыводимыми из других оснований, и так как, достигнув их, мы уже не можем продолжать восхождение к новым основаниям, то такие основания принято называть последними или исходными основаниями как данной науки в целом, так и всех употребляемых в ней доказательств.
Но так как при изложении математических наук на первом месте сообщаются именно исходные основания науки и уже затем с помощью этих оснований доказываются сначала первые, а затем все последующие теоремы этой науки, то исходные основания иногда называют также и первыми основаниями.
§ 33. Все исходные основания являются либо определениями основных понятий данной науки, либо её аксиомами.
Никакая наука — каковы бы ни были её предмет и её область — не может доказывать своих положений без точного определения понятий, входящих в эту науку и во все её доказательства. Геометрия, арифметика, механика, физика, химия, политическая экономия и т. д. начинаются с определения основных для каждой из них понятий. Будучи однажды установлено в своём содержании, определение должно мыслиться в том же самом содержании во всех рассуждениях данной науки и во всех её доказательствах. Если бы, взявшись исследовать, например, свойство плоских треугольников, мы в одном случае под словом «плоский треугольник» разумели одно содержание, а в другом — другое, противоречащее первому, то мы не могли бы доказывать свойства этих треугольников. И точно так же, если бы, взявшись исследовать законы производства и обмена товаров, политическая экономия в одном случае разумела под словом «товар» одно, а в другом — другое содержание, она не могла бы обосновывать свои учения о товаре.
§ 34. Кроме определений к числу высших оснований науки принадлежат также и аксиомы. Так называются основания, которые не доказываются данной наукой и принимаются ею в качестве исходных оснований. Примером аксиомы в арифметике может быть аксиома, согласно которой сумма данных количеств не изменяется от перестановки слагаемых количеств и т. д.