Сходство между определением и аксиомой состоит в том, что и определения и аксиомы употребляются в качестве исходных оснований доказательства, т. е. таких оснований, которые не выводятся из других оснований.
Различие между определением и аксиомой может быть легко выяснено. Определение есть установление содержания основного для данной науки понятия. Определение, например, вертикального угла предполагает согласие между всеми геометрами о том, какое содержание разумеют они, когда речь идёт о вертикальных углах. Определение понятия «товар» предполагает согласие между экономистами, по которому под «товаром» все они разумеют вещь, способную удовлетворять какую-либо потребность и способную обмениваться на другие вещи. Установление системы принятых в данной науке определений устраняет ту сбивчивость в понятиях, которая была бы неизбежной, если бы относительно терминов, означающих эти понятия, не существовало согласия.
Чем точнее определение, тем меньше опасность логических ошибок, происходящих от отсутствия определённости в мышлении. И, напротив, при отсутствии точных определений понятий всегда возможно недоразумение, состоящее в том, что собеседники или спорщики только воображают, будто рассуждают об одном и том же предмете, в действительности же каждый из них в ходе рассуждения под одним и тем же словом разумеет не совсем одно и то же (а иногда и совершенно различное) содержание.
§ 35. В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.
Определение, само по себе взятое, ещё не говорит о необходимой истинности определяемого. Правда, в огромном большинстве случаев определения выражают то самое содержание предмета, которое существует в действительности. Но возможно точное определение и такого понятия, которое означает предмет, не существующий и не могущий существовать в действительности. Так, задача квадратуры круга, т. е. отыскания квадрата, площадь которого была бы в точности равновелика площади круга, есть задача неразрешимая, но самое понятие квадратуры круга может быть определено вполне точно.
Напротив, аксиома есть не условие, принятое относительно значения и содержания известного понятия, но некоторое утверждение, которое рассматривается в данной науке в качестве положения заведомо истинного.
§ 36. Иногда думают, будто аксиомы не доказываются потому, что истины, выражаемые в этих аксиомах, настолько очевидны, что не требуют никакого доказательства. Мнение это не совсем правильное. И действительно, очевидность истины, сама по себе взятая, ещё не освобождает от необходимости доказать эту истину, — если только такое доказательство может быть найдено.В геометрии, например, существует немало теорем, которые не-специалисту представляются совершенно очевидными в своей истинности и которые тем не менее доказываются со всей строгостью принятых в этой науке доказательств. Такова, например, теорема, согласно которой диаметр всякого круга делит этот круг на равные части и т. д.
§ 37. Но аксиомы даже не являются положениями безусловно очевидными.
По крайней мере некоторые из аксиом геометрии уже в древности казались далеко не безусловно очевидными. Таков, например, пятый постулат, или одиннадцатая аксиома Евклида, согласно которой через точку С (см. рис. 69), взятую вне данной прямой АВ, на плоскости, где находятся и С и АВ, можно провести только одну единственную прямую, например ОС,которая при продолжении не пересекалась бы с прямой АВ, так что всякая другая прямая, проведённая через точку С и лежащая в той же плоскости, при достаточном продолжении пересечётся с прямой АВ.
Рис. 69
Замеченная уже самим Евклидом независимость ряда предложений, доказываемых геометрией, от одиннадцатой аксиомы, появление этой аксиомы в «Началах» Евклида лишь после доказательства 28 теорем первой книги «Начал», внушали геометрам мысль доказать эту аксиому в качестве теоремы. Однако попытка доказательства её, предпринятая вслед за другими геометрами Лобачевским и так же, как и у них, неудавшаяся, привела Лобачевского к открытию, что допущение, противоречащее аксиоме о параллельных, в сочетании со всеми остальными аксиомами Евклида, будучи принято в качестве одного из исходных оснований геометрии, даёт возможность развить целую систему геометрии, которая, при всём противоречии этого основания непосредственному наглядному представлению о пространственных отношениях, нигде не запутывается во внутренних противоречиях и строго доказывает все свои предположения.