Выбрать главу

Иногда объёмы двух понятий, А и В, частично совпадают. Это происходит в тех случаях, когда часть предметов, входящих в объём понятия А (но не все предметы, составляющие , объём понятия А), входит также и в объём понятия В. Наглядно отношение между объёмами таких понятий изображается посредством двух перекрещивающихся , кругов (см. рис. 3).

Рис. 3

Например, уже рассмотренное нами отношение между объёмами понятий «паразиты» и «растения» может быть представлено так, как оно изображено на рис. 3: некоторые (но не все) паразиты суть растения, и некоторые (но не все) растения суть паразиты. При этом заштрихованная и общая обоим кругам часть плоскости рисунка будет обозначать те предметы, которые одновременно принадлежат как объёму понятия А, так и объёму понятия В. Незаштрихованные части обоих кругов будут обозначать те части объёмов обоих понятий, которые не могут совпадать: растения, которые не являются паразитами, и паразитов, которые не являются растениями.

Если ни один предмет, принадлежащий объёму понятия А, не может одновременно принадлежать объёму понятия В, то отношение между объёмами таких двух понятий изображается при помощи двух кругов, помещённых один вне другого так, что ни одна точка, лежащая на площади одного круга, не может оказаться лежащей на площади другого круга (см. рис. 4).

Рис. 4

Например, отношение между объёмами понятий «острый угол» и «тупой угол» может быть представлено так, как оно представлено на рис. 4: сразу видно, что ни один острый угол не может быть тупым углом и, наоборот, ни один тупой угол не может быть острым.

§ 24. В отличие от совместимых понятий, несовместимыми называются два таких понятия, в содержании которых имеются признаки, исключающие возможность не только полного, но и частичного совпадения объёмов обоих понятий. Таковы, например, понятия «больной» и «здоровый». Невозможно найти такой предмет, который одновременно принадлежал бы к объёму обоих этих понятий. Иными словами, объёмы таких понятий не могут даже частично совпадать между собой.

Так как объёмы несовместимых понятий не могут совпадать между собой даже частично, то отношение между объёмами таких понятий изображается так, как это представлено на рис. 4, — в виде двух кругов, лежащих один вне другого.

§ 25. И класс совместимых понятий и класс понятий несовместимых в свою очередь заключают в себе каждый дальнейшие подразделения.

Совместимые понятия бывают либо равнозначащие, либо подчинённые друг другу, либо перекрещивающиеся.

Равнозначащими понятиями называются такие понятия, у которых содержание заключает в каждом из них различные признаки, однако признаки эти так связаны между собой, что в силу этой связи объёмы таких понятий совпадают, оказываются тождественными. Таковы, например, понятие перпендикуляра, восстановленного в плоскости круга к конечной точке его радиуса, и понятие неограниченной прямой, имеющей то же направление и проходящей через ту же точку окружности круга. Оба эти понятия имеют в своём содержании различные признаки, но один и тот же объём, так как такой перпендикуляр и такая прямая совпадают. Или, например, понятие «основатель науки логики» и «философ — воспитатель Александра Македонского». И здесь признаки, входящие в содержание этих двух понятий, различны, но объёмы обоих понятий совпадают, так как основателем науки логики и философом — воспитателем Александра Македонского был один и тот же человек, а именно греческий философ Аристотель.

Наглядно отношение между объёмами равнозначащих понятий изображается так, как оно представлено на рис. 5.

Рис. 5

Здесь буквы А и В, помещённые внутри одного и того же круга, обозначают, что у понятий А и В содержание различно, но объём — один и тот же.

§ 26. Второй вид совместимых понятий составляют подчинённые понятия. Отношение подчинения понятий — одно из самых важных в логике. Рассмотрим пример такого отношения. Пусть имеются два понятия: понятие «треугольник» и понятие «прямоугольный треугольник». Очевидно, оба они — понятия совместимые, так как в содержании обоих нет признаков, исключающих совпадение объёмов этих понятий: некоторые треугольники являются прямоугольными треугольниками. Рассмотрим теперь ближе отношение между этими понятиями. Всё, что мыслится в содержании понятия «треугольник», очевидно, полностью входит и в содержание понятия «прямоугольный треугольник» и есть часть этого последнего. В самом деле: в содержание понятия «прямоугольный треугольник» входят, во-первых, все без исключения признаки, образующие содержание понятия «треугольник», и, во-вторых, кроме них ещё некоторые другие, которые свойственны только одним прямоугольным треугольникам и которыми прямоугольные треугольники отличаются от всех остальных треугольников. Так обстоит дело с содержанием этих двух понятий.