Тогда в одних углах эта величина будет меньше прямого угла, в других — равна прямому и в третьих — больше прямого.
Совершенно очевидно, что каждому изменению признака в содержании понятия во всех трёх указанных случаях будет соответствовать известная часть объёма понятия «угол». Одну часть этого объёма займут острые углы, другую — прямые и третью — тупые. А так как других случаев изменения величины угла не предполагается, то очевидно, что при таком изменении признака величины угла мы разделим весь объём понятия угла только на три части.
При этом каждая часть объёма будет соответствовать одному из трёх возможных случаев изменения величины угла, а все три части объёма в своей сумме исчерпают весь объём понятия «угол».
Логический приём, посредством которого мы делим весь этот объём на части, или на виды, называется делением понятия.
Понятие, объём которого выясняется при посредстве деления, называется «делимым». Виды или видовые понятия, на которые разделяется объём делимого, называются членами деления.
§ 14. Объём одного и того же родового понятия может быть разделён на виды не одним единственным способом. Какие именно виды получатся в результате деления понятия, зависит от того, по какому признаку производится само деление. Так, объём понятия «треугольник» может быть разделён на виды различным образом — в зависимости от того, будем ли мы рассматривать различия между треугольниками по величине их углов или по относительной величине сторон.
В первом случае, руководясь различиями по величине углов, мы найдём, что весь объём понятия «треугольник» делится на видовые объёмы прямоугольных, остроугольных и тупоугольных треугольников. Во втором случае, принимая во внимание относительную величину сторон, мы найдём, что тот же объём понятия «треугольник» разделится на видовые объёмы разносторонних, равнобедренных и равносторонних треугольников.
Признак (или группа признаков), по изменению которого мы можем разделить объём родового понятия на виды, называется основанием деления.
§ 15. Разделение понятий играет важную роль в логическом мышлении. Особенно велика его роль в науке и научном мышлении. Разделение — если оно правильно произведено, — во-первых, точно выясняя объём понятия, раскрывает соотношение между видами, принадлежащими к одному и тому же роду, и соотношение между подвидами каждого вида.
Во-вторых, разделение объёма понятия применяется, как мы увидим ниже, в качестве составной части некоторых доказательств.
В-третьих, разделение постоянно применяется — и в практической жизни и в науке — при классификации. Классификацией называется такое распределение всех предметов известного класса по разрядам, при котором переход от одного разряда к другому совершается систематически, по определённому правилу, каждый предмет класса попадает в какой-нибудь один из разрядов класса, а сумма всех предметов во всех разрядах оказывается в точности равной сумме всех предметов класса.
Для осуществления всех этих задач деление должно быть правильным, а для этого требуется строго выполнять три следующих необходимых условия.
§ 16. Первое условие правильного деления состоит в том, чтобы каждое данное деление производилось по одному и тому же основанию. Хотя объём одного и того же понятия может быть разделён на виды, вообще говоря, различным образом, т. е. по различному основанию, однако в каждом отдельном случае деление должно производиться только по одному основанию. Так, объём понятия «треугольник» может быть разделён на виды либо по величине углов, либо по относительной величине сторон. Но нельзя, начав деление треугольников по признаку величины углов и не закончив этого деления, перескакивать вдруг на деление по признаку относительной величины сторон и продолжать деление по этому — уже другому — основанию. Нельзя также делить людей на худых, толстых и глупых или делить картины на исторические, бытовые, пейзажные и акварельные. Во всех этих примерах одна и та же ошибка: основание деления не одно и то же. Так как в каждом из этих предметов деление производится не по одному и тому же признаку, то у нас не может быть уверенности ни в том, что мы действительно полностью разделили весь объём делимого рода на виды, ни в том, что каждый экземпляр рода попал в результате деления только в один какой-нибудь из видов рода.Так, глупыми могут быть и толстые и худые.