§ 23. Девятое общее правило формулируется так: если одна из посылок частная и если вывод вообще возможен, то он может быть только частным. Если обе посылки утвердительные и одна из них общая, а другая частная (А, I), то один термин — субъект общеутвердительной посылки — будет распределён. Но чтобы вывод получился общий, необходимо, чтобы в посылках были распределены два термина: средний, как во всех силлогизмах, и меньший, так как меньший термин не может быть распределён в выводе, если он не распределён в посылке. Но так как в нашем случае в посылках распределён всего лишь один термин, то вывод возможен только частный. Так, из посылок «все рыбы — позвоночные животные» и «некоторые водные животные — рыбы» можно получить только частный вывод: «некоторые водные животные суть позвоночные животные».
Если же из двух посылок одна утвердительная, а другая отрицательная, причём одна из них частная (IE, EI, ОА, АО), то в посылках будут распределены два термина: субъект общего суждения и предикат отрицательного. Однако и в этом случае вывод не может быть общим. И действительно, при одной отрицательной посылке вывод может получиться только отрицательный. Так как наши посылки — IE, EI, ОА, АО, то вывод из них может быть лишь отрицательный. Таким образом, наш общий вывод, в случае если бы он был возможен, должен был бы быть отрицательным. Но так как в общеотрицательном выводе распределены и субъект и предикат (субъект как субъект общего, предикат как предикат отрицательного суждения), то они должны быть распределены и в посылках. Кроме того, в одной из посылок должен быть распределён также и средний термин. Итак, для того чтобы вывод из наших посылок мог оказаться общим, в посылках должны быть распределены целых три термина. А так как в наших посылках распределены только два термина, то общий вывод из них невозможен.
§ 24. Десятое правило, общее для всех фигур силлогизма, формулируется так: если бо́льшая посылка — частная, а меньшая — отрицательная, то вывод невозможен. Рассмотрим, например, посылки: «некоторые гвардейцы — орденоносцы», «ни один боец Н-ской части — не гвардеец». Согласно большей посылке отношение между средним термином М («гвардейцы») и бо́льшим термином Р («орденоносцы») таково, что часть объёма М входит в объём Р (см. рис. 56).
Рис. 56
Согласно меньшей посылке отношение между меньшим термином S («бойцы Н-ской части») и средним термином М («гвардейцы») таково, что весь объём S целиком находится вне всего объёма М (см. рис. 57).
Рис. 57
Сопоставим теперь обе посылки и посмотрим, что можно вывести из них об отношении «бойцов Н-ской части» к «орденоносцам» (S к Р). То, что известно из посылок об отношениях между терминами М, Р и S, оставляет открытыми три возможных отношения между S и Р (см. рис. 58).
Рис. 58
Первая из них состоит в том, что, будучи целиком вне объёма М, объём S весь входит в объём Р. В этом случае, не будучи гвардейцами, все бойцы Н-ской части могут быть орденоносцами. Вторая состоит в том, что, будучи целиком вне объёма М, объём S известной своей частью входит в объём Р. В этом случае, не будучи гвардейцами, некоторые бойцы Н-ской части могут быть орденоносцами. Наконец, третья возможность состоит в том, что, будучи целиком вне объёма М, весь объём S находится также и вне всего объёма Р. В этом случае, не принадлежа к гвардейцам, ни один боец Н-ской части не принадлежит в то же время и к орденоносцам. Так как из посылок не видно, какая именно из этих трёх возможностей должна иметь место, то при указанных условиях (когда бо́льшая посылка — частная, а меньшая — утвердительная) вывод невозможен.
§ 25. Из сказанного видно, что различные по качеству и количеству силлогистические выводы требуют различных условий распределённости терминов в посылках.
Для получения частноутвердительного вывода (I) достаточно, если в посылках распределён только один средний термин.