Выбрать главу

Подчинение

Объем понятия B полностью включается в объем понятия A, например, объем понятия «дуб» полностью включается в объем понятия «дерево». Иногда отношение подчинения называют «родо-видовым» отношением: более широкое по объему понятие A называют «родом», а понятие B называют «видом».

Тождество

Объемы понятий A и B совпадают, т.е. это одна и та же совокупность предметов, отображаемая с точки зрения разных существенных свойств двумя понятиями, например: «первый космонавт» и «Ю.А. Гагарин», «квадрат» и «равноугольный ромб», «храбрый» и «смелый».

Несовместимыми называются понятия, объемы который не имеют общих элементов, т.е. нет предметов, которые одновременно включались бы как в объем одного, так и в объем другого понятия. Существует три разных отношения между объемами таких понятий.

Соподчинение

Объемы понятий A и B полностью различны, но они все-таки сравнимы, т.е. имеют в своих содержаниях какие-то общие черты. Именно это мы и имеем в виду, когда помещаем их в объем третьего, более широкого понятия C, видами которого являются наши несовместимые понятия. Например, понятие A – «дуб», понятие B – «береза». Эти понятия не имеют общих элементов, нет предмета, который одновременно был бы и дубом и березой, однако и дубы, и березы включаются в объем более широкого понятия «дерево» (C).

Противоположность

Выше нам было безразлично, как именно располагаются наши дубы и березы в объеме понятия «дерево». Но иногда это имеет значение, ибо предметы, входящие в объемы сравниваемых понятий, стремятся как можно дальше отодвинуться друг от друга, как бы тяготеют к разным полюсам в объеме третьего родового понятия. Например, «богатые» – «бедные», «трусливые» – «храбрые», «здоровые» – «больные» и т.п. Такие понятия называются «противоположными».

Противоречие

Два сравниваемых понятия не просто тяготеют к разным полюсам в объеме третьего понятия, но вместе полностью исчерпывают объем этого третьего понятия, например, «богатый» – «небогатый», «здоровый» – «нездоровый» и т.п. Такие понятия называются «противоречащими» друг другу. При выражении противоречащих понятий в языке одно из них содержит, как правило, отрицательную частицу: «неумелый», «невежливый», «невысокий» и т.п. Отличить противоположность от противоречия нетрудно: противоположные понятия оставляют между своими объемами некоторую «прокладку», т.е. те предметы, которые не включаются ни в первое, ни во второе понятие; противоречащие понятия полностью исчерпывают объем третьего, более широкого понятия.

Порой бывает полезно с помощью этих простых схем наглядно представить себе отношения между объемами тех или иных понятий. В каком, например, отношении находятся следующие понятия:

A – врач,

B – хирург,

C – женщина.

Берем первую пару понятий. Каково отношение между врачами и хирургами? Пересечение? Нет, ибо тогда часть хирургов окажется вне круга врачей. А что это за хирурги, которые не являются врачами? Бандиты! Все хирурги должны войти в число врачей. Тогда между объемами этих понятий должно быть отношение подчинения: все хирурги врачи, но не все врачи – хирурги. Теперь можно приняться за женщин. Могут женщины быть хирургами? Могут. Могут женщины быть врачами других специальностей – терапевтами, отоларингологами, психиатрами? Могут. А могут ли они быть просто женщинами, не врачами? Еще как могут! Тогда круг женщин пересекаем с обоими кругами:

Рисование кружков кажется детским занятием. Однако оно полезно в том отношении, что заставляет нас задуматься над содержанием даже хорошо известных нам понятий. Смысл, содержание многих слов мы схватываем довольно поверхностно, поэтому плохо представляем себе, к каким объектам они относятся. Пытаясь точно представить отношения между объемами понятий, мы гораздо яснее и глубже начинаем понимать их содержание. Попробуйте изобразить отношения между объемами очень хорошо известных вам понятий: 5) мать – дочь – бабушка – женщина, и вы убедитесь, как мало мы вдумываемся в значения этих слов!

Пора немного подумать! Многие из вас помнят детскую задачку о волке, козе и капусте, которых нужно было по очереди перевезти на другой берег реки и при этом не допустить, чтобы коза съела капусту, а волк сожрал козу. Она представляет собой упрощенный вариант довольно старой задачи, имеющей множество сложных вариантов. Вот один из них.

6) На берег реки приехали 3 рыцаря, каждый со своей дамой. У берега реки стоит лодка, способная вместить не более двух человек. Как с помощью этой лодки рыцарям и их дамам переправиться на другой берег, если должно быть выполнено условие: ни одна дама не может оказаться в обществе других рыцарей, если рядом с ней нет ее собственного рыцаря? Лошади переплывают реку сами, дамы способны грести веслами не хуже рыцарей, в лодку входят и из нее выходят по одному, лодка может пересекать реку сколько угодно раз, обратно лодку кто-то должен пригнать и т.п. Не выдумывайте ситуаций, когда кто-то прыгает из лодки на берег, а с берега другой прыгает в лодку и оказывается, что оба парят в воздухе!

Попробуйте найти хотя бы один способ переправы.

Неточность, неясность, многозначность

Слова нашего повседневного языка и выражаемые ими понятия часто оказываются неточными и неясными. Это приводит к ошибкам в рассуждениях, к бесплодным спорам, служат основой софистики и демагогии. Логика пытается устранить неясность и многозначность выражений нашего языка или хотя бы обратить на них внимание.

Неточным является такое понятие, границы объема которого расплывчаты, неопределенны.

Возьмите, скажем, понятие «молодой человек». Ну, в 20 лет человека можно считать молодым. А в 30? А если человеку уже перевалило за 40? Нет четкой границы между молодым и немолодым человеком. Таковы же понятия «высокий», «дом», «окно», «далекий» и т.д. Взгляните, как легко впасть в противоречие при использовании неточного понятия! Известно, что на голове человека около 100 тыс. волос. Выберем 100 тыс. человек и выстроим их в ряд. Первым поставим человека с наибольшим количеством волос на голове; вторым – того, у которого на один волос меньше; третьим – того, у которого на один волос меньше, чем у второго, и т.д. Последним в ряду будет человек, у которого на голове нет ни одного волоса. Пройдемся вдоль этого ряда. Первый человек в ряду, безусловно, не лысый. Взяв произвольную пару из этого ряда, найдем, что если первый из пары – не лысый, то и второй не будет лысым, ведь у него всего на один волос меньше! Отсюда на основании математической индукции следует, что ни одного человека из этого ряда нельзя назвать лысым. Но ведь последний в ряду – совершенно лысый человек! Таким образом, глаза нам говорят одно, а разум – совсем другое. Чтобы не сталкиваться с подобными противоречиями, нужно стремиться заменять неточные понятия точными.