В. И. Вернадский поддерживал мысль о том, что
«…жизнь с космической точки зрения „есть не что иное, как постоянное задержание и накопление химической и лучистой энергии, замедляющие превращение полезной энергии в теплоту и препятствующие рассеянию последней в мировом пространстве“.
«В „Очерках геохимии“ Вернадский охарактеризовал основные способы увеличения энергии в биосфере: во-первых, это фотосинтез и выделение организмами кислорода, обладающего высокой химической активностью; во-вторых, захват растениями новых областей Земли, превращение их в области аккумуляции солнечной энергии при фотосинтезе; в-третьих, аккумуляция солнечной энергии в горючих ископаемых и биогенных минералах. Эволюция биосферы, отмечал Вернадский, ведёт к прогрессивному накоплению запаса превращаемой энергии в поверхностных оболочках Земли, прежде всего в литосфере, и тем самым к уменьшению „производства“ непревращаемых форм энергии в земных условиях. Препятствуя деградации энергии, жизнь обусловливает рост негэнтропии в биосфере; „происходит увеличение деятельной энергии“ (Вернадский, „Очерки геохимии“, стр. 228). По мере развития растительности и усложнения трофических связей в биосфере идёт обогащение её живого и биокосного вещества аккумулированной энергией».
Затраты энергии на преодоление энтропии растут с повышением уровня организации живых существ.
«У птиц и крупных млекопитающих эффективность использования ассимилированной энергии меньше 1 %, а у мелких млекопитающих она достигает 6 %, у насекомых колеблется в пределах 5-13 % и, наконец, у некоторых водных животных превышает 30 %. Наименее активные пойкилотермные животные, обитающие в воде, затрачивают значительную часть ассимилированной энергии на рост и размножение, достигая тем самым максимума в эффективности использования энергии на воспроизводство биомассы данной особи. Однако особи со столь высоким коэффициентом использования ассимилированной энергии относятся к видам, отличающимся низким коэффициентом выживаемости».
То есть, никакого противоречия законам термодинамики нет. Синица поедает в день столько насекомых, сколько сама весит. Но только ничтожная доля съеденного ею вещества (упорядоченного в виде биологических тканей) пойдёт на прирост тела синицы (и, соответственно, будет пребывать в упорядоченной форме). 90 — 99 % плоти насекомых будет преобразовано в простые продукты: углекислый газ, водяной пар и соли. А значительная доля химической энергии, запасённой насекомыми, рассеется в виде тепла, выделяемого телом синицы. Не зря для повышения эффективности использования энергии растущие птенцы синицы (и других птиц) эктотермны, то есть, их греет мама, а не внутреннее тепло химических процессов. А сами насекомые запасли в упорядоченном веществе своего тела 5 — 13 % той химической энергии, что получили со съеденными растениями. Остальная энергия рассеялась, а сложные вещества растения превратились в углекислый газ и водяные пары.
«В ходе эволюции биосферы была выработана оптимальная организация, связанная с особенностями использования ассимилированной энергии на различных уровнях жизни (Шварц, 1976). В предложенной Шварцем схеме показано, что эффективность её использования падает по мере повышения уровня биологической интеграции. Эта эффективность составляет (%): элементарные физиологические функции — 70–80; работа организма в целом и комплексные физиологические функции — 15–50; рост, размножение и развитие индивида — 1.5-15; размножение и развитие популяций — 0,5–7; использование энергии сообществом фотосинтезирующих растений — 0,1–2; использование энергии солнечного излучения высшими трофическими звеньями — 0,01-1; использование солнечной энергии для продуцирования новых тканей животных — 0,0002-0,05».
Куда девается вся остальная энергия? Рассеивается в виде тепла, идёт на расщепление сложных органических веществ до простых низкомолекулярных. Из одной молекулы глюкозы и трёх молекул кислорода образуется 6 молекул углекислого газа и 6 молекул воды:
C6H12O6 + 3O2 > 6 CO2 + 6H2O