— А как этот лунный модуль вообще летал?
В этом модуле стоят два астронавта (сесть им негде). Если кто-то из них переступит с ноги на ногу, то центр тяжести системы сместится, модуль потеряет равновесие и упадёт. Такая штука должна летать, как летает воздушный шарик, если его надуть и отпустить, не завязывая — то и дело вилять в разные стороны и, в конце концов, врезаться в Луну.
— Вы правы — если равнодействующая силы тяги двигателя не проходит через центр тяжести ракеты, то ракета начинает поворачиваться. Однако перемещение астронавтов — не самое страшное, что может случиться с лунным модулем. Очень существенную часть его массы составляет жидкое топливо. И это топливо весело плещется в баках, а вместе с ним гуляет туда-сюда и центр тяжести системы. Две с лишним тонны топлива взлётной ступени — это вам не астронавт, переминающийся с ноги на ногу! Кроме того, при подъёме взлётная ступень летит не по прямой, а совершает некий манёвр с разворотом. Вначале она поднимается вертикально, потом наклоняется и разгоняется по пологой траектории, чтобы выйти на орбиту вокруг Луны. Поэтому совершенно необходимо уметь управлять направлением тяги: удерживать его проходящим через центр тяжести, когда надо лететь по прямой, и намеренно смещать его от центра тяжести, когда надо изменить курс. Всё сказанное, кстати, справедливо не только для взлётной ступени, но также и для любой ракеты, взлетающей с Земли. Ракету-носитель удерживать на курсе даже тяжелее — жидкое топливо при старте составляет подавляющую часть её массы, и смещения центра тяжести из-за смещения топлива куда существеннее, чем для лунного модуля. Итак, чтобы ракета (будь то лунный модуль или мощный носитель) не упала и летела туда, куда нужно, ей необходимо управлять.
Изобретательные инженеры-ракетчики выдумали немало способов управления направлением тяги. Самый старый — газовые рули, которые применялись ещё на «Фау-2». За соплом ставят небольшие графитовые плоскости, которые могут поворачиваться и частично отклонять поток газа в ту или иную сторону. (Очень похоже на руль на морском судне.) Можно отклонять газовый поток и целиком — если двигатель не жёстко закрепить в корпусе, а установить в кардановом подвесе, чтобы его можно было отклонять в стороны. Так управлялась американская лунная ракета «Сатурн-5». Можно, наконец, в дополнение к основному двигателю поставить несколько маломощных поворотных рулевых двигателей или камер сгорания. Так сделано на ракете «Союз».
Непременная часть системы управления любой ракеты — автомат угловой стабилизации. Именно он обеспечивает устойчивость ракеты в полёте. Входящие в его состав гироскопические датчики вырабатывают электрические сигналы, пропорциональные угловым отклонениям ракеты от требуемого положения. Эти сигналы усиливаются и подаются на рулевые органы ракеты (газовые рули, приводы поворота двигателей и т. п.) (рис. 127), и ракета разворачивается и занимает нужную ориентацию в пространстве. Эта задача давно отработана — как уже сказано, её необходимо решить для любой ракеты, и ничего специфического в управлении именно лунным модулем нет.
Посадочный двигатель лунного модуля может поворачиваться и компенсировать возможные смещения центра тяжести. Кроме того, на взлётной ступени расположено 16 двигателей системы ориентации и стабилизации, собранных в 4 группы по 4 двигателя в каждой. Справа приведён фрагмент фотографии NASA as17-134-20463, на которой хорошо видны две группы этих двигателей: одна — слева от центра кадра, другая — в его правом нижнем углу. Эти двигатели работают и при посадке, т. к., например, поворот модуля вокруг вертикальной оси возможен только с их помощью. А основной двигатель взлётной ступени закреплён жёстко, поэтому при взлёте с Луны ориентация взлётной ступени обеспечивается исключительно работой этих двигателей.