Но едва ли можно рассматривать тень, как существующий сам по себе материальный объект, хотя Питер Пэн будто бы и потерял свою тень. Есть еще и немецкое сказание о другом Петре — о Петре Шлемиле, который продал свою тень дьяволу. В этой прелестной сказке Адальберта Шамиссо его сатанинское величество скатывает тень в трубку, как кусок обоев, и уносит ее под мышкой. Нечего и говорить, что все это чистейшие фантазии.
Чтобы наше «плоскотелое» действительно могло существовать, оно должно состоять из молекул вещества, а это уже само по себе выдвигает необходимость хоть какой-нибудь толщины, — пусть даже в одну миллионную долю толщины самого тонкого листка золота — то есть, тончайшего из известных нам и поддающихся осязанию предметов. По сравнению с длиной и шириной нашего предмета такая ничтожная толщина практически равнялась бы нулю. Однако, мы можем представить себе, что, накладывая друг на друга эти предметы в очень большом числе, мы достигнем некоторой толщины, которую можно будет измерить — подобно тому, как мы представляем себе трехмерную тень состоящей из бесконечного числа двухмерных предметов.
Далее, допустим, что три плоскотелых существа оказались достаточно умственно развитыми, чтобы думать в пространстве трех измерений и представлять себе возможность движения в трехмерном пространстве. «Дуодим» № 1, будучи математиком, рисует чертеж какого-нибудь трехмерного предмета, хотя бы цилиндра, наподобие того, как художник на совершенно плоском листе бумаги создает картину пространственных предметов.
Предположим также, что дуодим № 2, опытный механик, на основании этого чертежа вырезывает очень большое число кружков из какого-нибудь материала — разумеется, чрезвычайно тонкого — и накладывает круги один на другой, пока у него не получится цилиндр. От этого уже только один шаг, чтобы изготовить два прута, скрепить их посредине в виде щипцов и придать им надлежащий изгиб с тем, чтобы дуодим № 3, который умеет превосходно манипулировать инструментами, получил возможность перемещать различные неподалеку расположенные предметы в той же плоскости. Быть может, схематический чертеж сделает мою мысль более ясной.
И профессор, взяв карандаш и бумагу с кухонного стола, служившего мне для письменных занятий, быстро набросал рисунок.
— Простите меня, — вставил я. — Но я боюсь, что в вашей теории есть серьезный недочет. Для того, чтобы ухватить какой-нибудь предмет таким приспособлением, ваше плоскотелое должно само двигаться в трехмерном пространстве, а согласно нашей предпосылке, это невозможно.
— Совершенно правильно, — согласился профессор. — Мой эскиз вовсе и не претендовал на достоинство точного и практически осуществимого чертежа, а должен был только служить иллюстрацией моей идеи. Однако, при ваших познаниях в механике разве вам трудно было бы сконструировать такую систему, посредством которой движение в известной плоскости могло бы быть преобразовано в движение под прямым углом к этой плоскости? Согласитесь, что это вполне осуществимо.
Я должен был признать его правоту.
— Отлично. Пока нам нужно только сконструировать аналогичное приспособление, которое имело бы протяжение в пространстве четырех измерений, и тогда доктор Мейер сможет удалить из моей печени камни без всякого потрясения для моего организма.
— Но откуда я узнаю, какова должна быть внешняя форма четырехмерных клещей или щипцов?
— Предоставьте это мне. Как «плоскотелый» математик мог бы начертить на плоской бумаге свой рисунок трехмерного предмета, так и я, пользуясь трехмерными проекциями, могу сконструировать модели, которые наглядно покажут вам внешний вид и все характеристики четырехмерного предмета. Это только кажется таким сложным, а на деле гораздо проще. Дайте мне десятилетнего, нормального в умственном отношении ребенка, и я посредством небольших пояснений и некоторых наводящих вопросов заставлю его указать все признаки четырехмерного куба. Сейчас я поясню, в чем дело.
Он снова взял карандаш и разграфил бумагу.
— Проследите за следующим построением. Вы передвигаете точку на некоторую единицу длины, скажем, на один сантиметр. Получилась линия или ребро в один сантиметр длиной. Затем вы движете эту линию на один сантиметр под прямым углом к ней — и получаете квадрат, площадь которого равна одному квадратному сантиметру. Далее вам нужно передвинуть квадрат на один сантиметр по направлению, перпендикулярному к его ширине и длине, и у вас образуется куб в один сантиметр длины, в один сантиметр ширины и в один сантиметр высоты. Теперь остается только передвинуть куб на расстояние одного сантиметра в направлении которое было бы перпендикулярно к его длине, ширине и высоте и не было бы параллельно ни одному из его трех измерений, — и у вас готов сверхкуб, выраженный в единице метрической системы.