И, наконец, третьим отцом-основателем популяционной генетики является Джон Бердон Сандерсон Холдейн. Он разработал математический подход, позволяющий понять, каким образом естественный отбор определяет частоту мутаций и как связаны между собой отбор, мутации и миграции. Холдейн также выдвинул гипотезу о связи между естественным отбором и устойчивостью к малярии, несмотря на то что подлинное авторство этого наблюдения, сделанного в 1949 году, принадлежит итальянскому генетику Джузеппе Монталенти. Именно Монталенти заметил, что нарушения в функционировании эритроцитов (талассемия[15] или дрепаноцитоз[16]) наблюдались главным образом в регионах, где малярия была распространенным заболеванием. И только в 1954 году Энтони Эллисон подтвердит гипотезу, что патологии эритроцитов могут защищать организм от малярии: этим объясняется увеличивающаяся частотность таких нарушений в регионах, где распространена малярия. Сегодня это показательный пример естественного отбора.
Открытие наследственного материала: ДНК
Подлинное развитие популяционная генетика получила гораздо позже, между 1930 и 1960 годами, благодаря взаимодействию естествоиспытателей, палеонтологов, математиков и генетиков, разработавших «синтетическую теорию эволюции». Эта теория, называемая неодарвинистской, стала апогеем идей Дарвина. Во главе нового научного движения стояли трое ученых – Эрнст Майр (1904–2005), Феодосий Добржанский (1900–1975) и Джулиан Хаксли (1887–1975). Вслед за Дарвином в своих работах они говорят, что эволюция – постепенный процесс, и это подтверждается как исследованиями в области генетики, так и наблюдениями естествоиспытателей. Изменчивость индивидов в пределах одной популяции порождается мутациями, рекомбинацией и переносом (потоком) генов[17]. Эволюция происходит в результате совместной работы двух механизмов: появления в пределах одной популяции новых мутаций и воздействия естественного отбора или дрейфа генов, изменяющих частотность мутаций в популяции. Синтетическая теория эволюции отстаивает идею, что естественный отбор – это главная движущая сила эволюции: она действует в условиях изменяющейся среды обитания и приводит к изменениям частотности мутаций, влияющих на фенотипы.
Тем не менее, несмотря на накопление теоретических знаний, укрепляющих научную базу популяционной генетики, эмпирических данных не хватало, и физический носитель наследственности еще не был известен. Открытие в 1953 году двуспиральной структуры ДНК стало поворотным моментом в развитии популяционной генетики. Фрэнсис Крик (1916–2004), Розалинд Франклин (1920–1958) и Джеймс Уотсон (род. 1928) показали, что ДНК состоит из двух цепочек соединенных между собой нуклеотидов четырех разновидностей, в состав которых входит сахар, связанный с фосфатной группой, и азотистое основание, обозначаемое буквами A, T, G или C. Эти нуклеотиды расположены в виде двойной спирали[18], «хребтом» (основой) которой служат сахара и фосфаты. Входящие в состав нуклеотидов азотистые основания соединяются водородными связями с комплементарным[19] основанием на другой цепочке.
Именно благодаря этим важным для молекулярной биологии – и для генетики – открытиям японец Мотоо Кимура смог объединить теоретический подход с эмпирическими данными, предложив в 1968 году теорию нейтральной эволюции. Эта теория предполагает, что большинство эволюционных изменений происходит из-за дрейфа генов, в отличие от синтетической теории эволюции, которая оказывала предпочтение воздействию естественного отбора. Так или иначе, нейтральная теория описывает эволюцию на молекулярном уровне, и сам Кимура признавал, что эволюция фенотипов не может происходить без воздействия естественного отбора.
15
Талассемии – это группа врожденных микроцитарных гемолитических анемий, которые характеризуются дефектом синтеза гемоглобина.
16
Дрепаноцитоз (серповидноклеточная анемия) – это наследственная генетическая аномалия строения гемоглобина (переносящий кислород белок, содержащийся в эритроцитах), характеризующаяся наличием эритроцитов серповидной формы (в виде полумесяца) и хронической анемией.
18
На русском языке структура «двойного винта» молекулы ДНК получила ошибочное, но ставшее уже традиционным название «двойной спирали», которое и будет использоваться далее в тексте. (