Выбрать главу

В 1871 г. после упорного труда Больцман опубликовал работу «О тепловом равновесии многоатомных молекул», в которой рассматривал газ, находящийся во внешнем потенциальном силовом поле. Примером такого поля может служить поле сил тяжести, т. е. задача, решаемая ученым, обусловлена физической реальностью. Приведем конечный результат, полученный Больцманом. Распределение молекул газа по скоростям при воздействии на газ потенциального поля имеет следующий вид:

где U(x, y, z) — потенциальная энергия молекул газа в данном силовом поле, C и β — величины, зависящие от температуры газа.

Интересно сравнить полученное Больцманом распределение (12) с распределением Максвелла (7). Формулы отличаются лишь функцией U(x, y, z) в показателе экспоненты. При U(x, y, z) — 0 из распределения Больцмана получается распределение Максвелла, которое становится, таким образом, частным случаем полученного Больцманом более общего результата. Соотношение (12) получило в физике название распределения Максвелла — Больцмана.

Физические результаты, вытекающие из соотношений (7) и (12), принципиально различны. В отсутствие внешних сил разные положения молекул в пространстве равновероятны, и молекулы с одинаковой средней плотностью заполняют весь предоставленный им объем (рис. 8а). Больцман установил, что когда газ находится во внешнем поле U(x, y, z), то наряду с тепловым движением молекул следует учитывать их потенциальную энергию. Это приводит к тому, что молекулы будут распределяться в сосуде неравномерно (рис. 8б). Большая часть молекул будет сосредоточиваться в том месте, где их потенциальная энергия минимальна.

Результаты, полученные Больцманом, получили высокую оценку Максвелла: «Опубликованные мною в 1860 г. результаты подвергались затем более строгому исследованию доктора Л. Больцмана, применившего также свой метод к изучению движения сложных молекул».

Работа Больцмана допускала многочисленные физические применения. Так, если внешним полем является поле сил тяжести

U(h) = mgh,

где h — высота над поверхностью Земли, то из теории следует, что концентрация молекул будет уменьшаться с высотой по закону

nk = п0∙exp(-βmgh), (13)

где n0 — концентрация молекул на уровне моря, β — зависящий от температуры коэффициент. Соотношение (13) получило в физике название барометрической формулы. О ее исключительной важности говорит хотя бы тот факт, что позднее с ее использованием были впервые получены экспериментальные доказательства реальности существования атомов (об этом будет рассказано в третьей части книги).

Другим следствием теории явился полученный Больцманом вывод о том, что в вертикальном столбе газа температура не изменяется с высотой. Этот результат вызвал возражения со стороны учителя и друга Больцмана Й. Лошмидта, который увидел в этом дополнительный аргумент в пользу «тепловой смерти» Вселенной. Рассуждения Лошмидта были довольно просты — если температура в вертикальном столбе не изменяется, то в масштабе Вселенной это и будет означать признание ее «тепловой смерти». Не признавая этой теории, Лошмидт утверждал, что температура в столбе не может быть постоянной, а второе начало термодинамики во Вселенной должно нарушаться. В результате острой, но дружеской дискуссии, направленной на глубокий анализ основ теории, Больцман доказал ошибочность утверждений своего оппонента.

Однако до полного признания распределения Максвелла, теперь уже распределения Максвелла — Больцмана, было еще далеко. Напомним, что вывод Максвелла был далеко не строгим. В таких случаях всегда возникают вопросы: «Единственно ли найденное распределение?» или «Не будет ли получен в результате более строгого вывода иной результат?» Конечно, можно было бы попытаться проверить найденное соотношение в эксперименте, но техника того времени еще не позволяла надеяться на подобную проверку.