Выбрать главу

Первую попытку доказательства единственности распределения выполнил сам Максвелл. Интересен ход его рассуждений. Если газ находится в состоянии термодинамического равновесия, то в нем установилось не меняющееся со временем — стационарное — распределение частиц по скоростям. Если v и v’ — скорости частиц до и после столкновения, то на первый взгляд возрастание числа частиц со скоростями v’ должно точно следовать за уменьшением числа частиц со скоростями v. Однако следует учитывать и то, что после столкновения частицы могут иметь и другую скорость. Процесс изменения скоростей, полагал Максвелл, будет продолжаться до тех пор, пока ряд скоростей v, v’, v”,… снова не придет к скорости v. Обмен между частицами, имеющими различные скорости из этого ряда, приводит к тому, что число частиц, имеющих данную скорость, сохраняется постоянным, а из этого следует, что полученное распределение будет единственным.

Эти рассуждения не кажутся Больцману убедительными. В работе «Дальнейшее изучение теплового равновесия молекул газа» (1872) он приводит ряд возражений против доказательства Максвелла и дает строгий вывод распределения. Больцман видит принципиальные погрешности доказательства Максвелла в рассмотрении изменения скорости отдельной частицы, в то время как в процессе столкновений участвуют и одновременно изменяют свои скорости как минимум две молекулы. Стационарное распределение молекул по скоростям, отмечает Больцман, возникает и поддерживается именно в результате таких парных столкновений. Если же соударений нет, то однажды заданное распределение будет сохраняться сколь угодно долго, а значит, допускается возможность любого произвольного распределения. Больцман также не согласен с утверждением Максвелла о том, что ряд скоростей v, v’, v”,…, v имеет одностороннюю направленность, поскольку обратные переходы v,…, v”, v’, v будут происходить так же часто, как и прямые.

Больцман дает строгий и изящный вывод закона распределения. Он рассматривает не переходы между скоростями одной частицы v v’, v v”, а такие переходы, когда скорости двух молекул до столкновения v1 и v2 заменяется на их скорости после столкновения v1 и v2. В условиях равновесия прямые переходы v1,v2 v1’,v2происходят так же часто, как и обратные v1’,v2v1,v2. Вывод Больцмана, занимающий всего одну страницу, можно встретить без изменений во многих современных учебниках физики.

В статьях 1872 и 1875 гг. Больцман еще более расширяет области применения полученного распределения, применяя его к многокомпонентным газам. Распределение Максвелла — Больцмана получает, таким образом, в этом цикле работ прочное теоретическое обоснование. Только сравнение с экспериментальными данными могло теперь заставить усомниться в справедливости формул. И все же строгий вывод закона распределения оставлял нерешенной проблему доказательства его единственности. Больцман решил и эту проблему, но на принципиально ином пути.

7. Новые идеи

Но дальше, ввысь, к пределам всех дерзаний, Творящий гений над землей парит, Созданье возникает из созданий, Гармония гармонию творит.
Ф. Шиллер

Работа Больцмана «Дальнейшее изучение теплового равновесия молекул газа» по своему значению занимает исключительное место в его научном наследии. Принципиально новыми были пути творческих поисков, исключительно богаты и плодотворны идеи, впервые изложенные в ней. Работа примечательна еще и тем, что в ней отразилась эволюция взглядов самого автора, его продвижение по пути решения поставленных перед собой задач. Результаты статьи и в наши дни являются рабочим инструментом ученых, более того, они привели в последующем к возникновению новой, бурно развивающейся в наше время научной дисциплины — физической кинетики, изучающей неравновесные процессы в различных физических и химических системах. Результаты, полученные Больцманом в этой работе, давно вышли по своему значению за рамки теории газов.