Выбрать главу
df/dt = (Δf)ст.,

где df/dt — полное изменение функции распределения во времени, (Δf)ст. — изменение функции распределения при столкновениях частиц.

Наибольшие и принципиальные трудности возникли перед Больцманом при отыскании математического выражения для (Δf)ст.. Ученый исходит из того, что молекулы газа движутся по всем направлениям в пространстве и имеют разные скорости, и указывает, что «без такого предположения вообще нельзя доказать ни одной теоремы теории газов». Но из этого вытекает, что сталкивающиеся молекулы могут иметь какие угодно скорости и координаты, т. е. налицо статистическая независимость молекул. Только с использованием этого предположения Больцману удалось найти (Δf)ст. в виде сложного интегрального выражения. В то же время тезис о статистической независимости молекул находился в противоречии с законами механики. В полной мере это выяснилось в процессе дискуссии по поводу полученных Больцманом результатов, и мы обсудим это несколько позже.

Уравнение, полученное Больцманом для изменения функции распределения неравновесных газов во времени, получило в дальнейшем название кинетического уравнения Больцмана. Оно оказалось настолько сложным, что его решение в общем виде невозможно. Тем не менее идеи, заложенные теоретиком в вывод этого уравнения, оказались настолько плодотворны, что оно широко используется в современной физике при изучении неравновесных систем и процессов переноса в них. Так как конкретные свойства газовых молекул не фигурировали при составлении уравнения, результаты решения могли быть распространены на физические системы, свойства которых значительно отличаются от свойств газа. Так, кинетическое уравнение Больцмана применяется для описания процессов электропроводности в металлах и полупроводниках, процессов замедления нейтронов и в ряде других случаев. До сих пор не ослабевает поток публикаций, связанных с решением данного уравнения в самых различных случаях, выходят монографии, посвященные этим вопросам.

В 1972 г. в Вене, на родине физика, состоялась международная конференция, посвященная столетию создания Больцманом кинетического уравнения. Доклады более чем 20 крупных ученых мира были посвящены не столько истории создания этого замечательного уравнения, сколько современному состоянию проблем, так или иначе связанных с этим неиссякаемым источником идей и приложений.

Кинетическому уравнению, полученному Больцманом, должна удовлетворять функция распределения при произвольном состоянии газа и любых действующих на него полях. Больцман применил полученные им результаты для решения принципиальных вопросов, причем более общая постановка проблемы дала ему возможность получить в виде частных решений уже имеющиеся результаты. Проведенный им в этой работе анализ показал, что если на газ не действуют внешние силы, то в случае равновесия функция распределения частиц по скоростям будет неизменной во времени тогда, когда она совпадает с распределением Максвелла. Тем самым Больцман получил доказательство стационарности максвелловского распределения и указал, что его вывод «есть не что иное, как доказательство распределения Максвелла, выраженное нашим современным языком». В более сложном случае, когда газ находится в поле внешних сил, Больцман получил в виде решения кинетического уравнения распределение Максвелла — Больцмана (12).

Ученый исследует и более общий случай, когда функция распределения меняется во времени, и ставит перед собой задачу показать, что в газе, предоставленном самому себе, с течением времени произвольная функция распределения будет все больше и больше приближаться к функции, описывающей состояние термодинамического равновесия, т. е. к максвелловской. Способ, который он выбирает для доказательства этого предположения, ошеломляет как своей оригинальностью, так и плодотворностью полученных результатов.