Второй закон термодинамики, утверждающий, что обратное превращение теплоты целиком в работу невозможно, не является абсолютным. В силу своего вероятностного характера он может нарушаться. Всесильная до сих пор механика не может объяснить все происходящие в системах изменения, для их описания необходимо применять вероятностные, статистические, допускающие исключения, законы. В это трудно было поверить, так как все экспериментальные факты, имеющиеся к этому времени, говорили обратное. Это была поистине революция в физическом мировоззрении, происходящая пока только у одного Л. Больцмана.
Вновь поражает эволюция взглядов Больцмана. От своей первой, целиком механической попытки объяснить второй закон термодинамики — к работе «Дальнейшее изучение теплового равновесия молекул газа», где объяснение дается уже с привлечением гипотезы о статистической независимости, являющейся, по существу, вероятностной, к намечаемому Больцманом новому пути доказательства, который должен быть полностью основан на теоретико-вероятностных представлениях. Ученый демонстрирует свое исключительно глубокое понимание существа решаемой им проблемы, диалектичность своего метода исследования. Новый подход Больцмана заключался в расчете вероятности различных состояний системы материальных точек, образующих идеальный газ, и доказательстве того, что наиболее вероятным состоянием этой системы является состояние термодинамического равновесия. Но это доказательство еще нужно было найти.
11. Вершина творчества
Всего восемь месяцев понадобилось Больцману, чтобы полностью решить поставленную задачу. Интенсивность его творческого процесса впечатляет. В октябре 1877 г. он публикует работу «Об отношении второго начала механической теории теплоты и исчисления вероятностей в соответствии с теоремами о тепловом равновесии». Вывод Больцманом второго закона с помощью вероятностных представлений, изложенный в этой работе, прост и убедителен.
Генеральная идея больцмановского решения — определение наиболее вероятного с термодинамической точки зрения состояния системы материальных точек. В качестве подобной системы может быть выбран коллектив молекул, образующих газ. С точки зрения механики состояние такой системы полностью определено заданием координат x, y и z и составляющих скорости vx, vy, и vz. Для описания системы необходимо знать 6N переменных, где N — число частиц в системе. Отметим, что перестановки частиц между собой не меняют механического состояния системы. Число таких перестановок нетрудно подсчитать. Так, если система состоит из двух частиц а и b, то число возможных перестановок равно, очевидно, двум: ab и ba. В случае трех частиц число возможных перестановок равно 6: abc, acb, bac, bca, cab, cba, четырех частиц — 24 и т.д. Коротко число возможных перестановок можно записать с помощью математического символа N! (N факториал), который расшифровывается как произведение всех натуральных чисел от 1 до N, т. е. N! = 1∙2∙3∙…∙N.
Больцман вводит в рассмотрение принципиально новую для физики величину — термодинамическую вероятность состояния системы. При ее подсчете он обращает внимание на то, что перестановки частиц, имеющих одинаковую энергию, не меняют термодинамического состояния системы. Для подсчета числа таких перестановок Больцман распределяет все частицы по группам. В первой группе находятся n1 частиц, обладающих энергиями от 0 до ε, где ε — некоторая малая порция энергии. Во второй группе находятся п2 частиц с энергиями от ε до 2ε и т.д. Такое разбиение частиц по дискретным энергетическим интервалам противоречило полученному Максвеллом и самим Больцманом непрерывному распределению частиц по энергиям, но это его не смущало. Вводя малую порцию энергии ε, он не придавал ей какого-либо физического смысла. Он рассматривал ее лишь как формальный математический прием, по его словам, «полезную функцию». К тому же в ходе дальнейшего исследования он устремлял ε к нулю, приходя, таким образом, к непрерывному распределению частиц по энергиям.