Выбрать главу

Разбиение частиц на определенные энергетические интервалы позволило Больцману подсчитать число перестановок частиц внутри каждого интервала. Очевидно, что внутри первого интервала их будет n1!, второго — n2! и т. д. Так как такие перестановки не меняют термодинамического состояния системы, то для определения термодинамической вероятности состояния Больцман предлагает исключить их из полного числа перестановок N!. Таким образом, Больцман определяет термодинамическую вероятность состояния системы W как

W = N!/(n1!∙n2! ...).

Максимум значения W соответствует, очевидно, наиболее вероятному состоянию системы. При расчете этого максимума необходимо учитывать следующие очевидные условия:

n1 + n2 + … = ∑ini = N = const (*)

(сумма частиц, входящих в энергетические интервалы, равна полному числу частиц в системе) и

ε1n1 + ε2n2 + … = ∑iεini = E = const (**)

где Е — полная энергия системы, εiэнергия частицы, находящейся в i-м энергетическом интервале.

Так как n1!, n2! велики, Больцман заменяет значения факториалов на их приближенные значения, пользуясь формулой Стирлинга:

где e — основание натуральных логарифмов (е = 2,718…). При этом термодинамическая вероятность состояния системы равна

Максимум W Больцман ищет для ее логарифма:

Так как N∙lnN — величина постоянная для данной системы, то задача сводится к отысканию максимума выражения

Если учесть, что

ni ~ f(εi)

где f — функция распределения частиц по энергиям, то последнее выражение можно переписать в виде

или (при ε → 0) в интегральной форме

Находя максимум этого выражения в сочетании с условиями (*) и (**), Больцман показал, что наиболее вероятному состоянию газа соответствует равновесная функция распределения (12). Выражение для lnW с точностью до постоянной равно ранее введенной величине H, взятой с обратным знаком. Поскольку H, как мы уже знаем, пропорциональна энтропии идеального газа, Больцман пришел к выводу, имеющему громадное физическое значение: энтропия системы S пропорциональна логарифму термодинамической вероятности данной системы:

S ~ ln W. (14)

Полученные Больцманом результаты имеют фундаментальное значение. Приближение газа к состоянию с максимальной энтропией есть не что иное, как переход газа из состояния с малой вероятностью в наиболее вероятное состояние. Энтропия имеет вероятностную, статистическую природу. Предельно четко и уверенно пишет об этом сам Больцман: «второе начало оказывается, таким образом, вероятностным законом».

Он предлагает новую редакцию второго закона термодинамики:

«…в большей части явлений природы, обнимающих огромное число материальных точек, всякое изменение системы, которое может произойти само собой (без компенсации), есть переход от менее вероятного состояния к более вероятному состоянию».

Так лестница поэзии ведет Все вверх его, дорогой звуков ясных, Дорогой форм, все более прекрасных, К вершинам новым, по цветам, вперед. И, наконец, последних поколений Еще одно усилье, мощный взлет, Последний взмах широких крыл — и вот Пред Истиною пал он на колени.
Ф.Шиллер

12. Действительная цепь причин и следствий

Больцманом получен поистине удивительный результат — величины совершенно различной природы — энтропия и вероятность — оказались связанными друг с другом. Энтропия S — физическая величина, характеризующая состояние тела, в то время как вероятность W была до сих пор понятием чисто математическим. Выводы Больцмана носили дерзкий, новаторский характер, он сделал попытку с помощью математики проникнуть в невидимый и загадочный микромир. При этом второй закон термодинамики утратил свою абсолютную достоверность. Из категории непогрешимых, жестоко определенных законов, дающих при их применении однозначный результат, он переводится в ранг вероятностных законов. Сразу же возникают вопросы. В какой мере явления, описываемые им, достоверны? Все знают, что вероятность какого-либо события может быть сколь угодно малой или, напротив, сколь угодно большой. В последнем случае можно говорить о практической (!) справедливости закона, но и это не снимает остроты вопроса. Даже если закон верен в 999 999 случаях из 1 000 000, то и тогда есть 1 шанс из 1 000 000, что закон будет нарушен. Но вправе ли мы называть его тогда законом? Как можно смириться с тем, что природа — а второй закон описывает явления природы — допускает и проявления случайности? И хотя вероятность, равная 0,999999, означает практическую достоверность закона, между полной определенностью и сколь угодно большой вероятностью зияет непроходимая пропасть.