Выбрать главу

Статистические методы с определенной модификацией в дальнейшем были применены и к анализу твердого и жидкого состояний вещества. Здесь выдающиеся результаты были получены в трудах советских ученых Я. И. Френкеля и H. H. Боголюбова. Ныне статистические методы широко используются при анализе различных явлений природы.

5. Свет новых далей

Мы расскажем здесь о том, как непосредственное участие Больцмана в решении одной крупнейшей физической проблемы привело впоследствии к рождению новой физики — физики XX столетия, физики микромира, или, как ее называют, квантовой механики. Это потребовало полного отказа от представлений классической физики, которую Больцман так успешно развивал и защищал. Открытие произошло под влиянием достигнутого и сделанного Больцманом.

Речь пойдет о проблеме, до сих пор лишь бегло упоминавшейся на страницах этой книги, а именно о проблеме теплового излучения. Вы знаете, что нагретые тела излучают энергию. Это может быть тепло хорошо протопленной печи, свечение спирали электрической плитки, свет, испускаемый лампой накаливания, тепловое излучение Солнца, в недрах которого температура достигает миллионов градусов. Хорошо известно также, что различные тела обладают способностью в большей или меньшей степени поглощать свет. Например, оконное стекло почти не поглощает света, но стоит сдвинуть шторы, как в комнате становится сумрачно — свет поглощается материалом штор. Сильно поглощающие свет тела кажутся нам черными, примером такого тела является сажа. Ученые-физики не могли пройти мимо проблемы изучения и объяснения закономерностей излучательной и поглощательной способностей различных тел.

Одним из исследователей этой проблемы был немецкий физик Г. Кирхгоф, в лаборатории которого в свое время проходил стажировку и Л. Больцман. Кирхгоф еще в 1859 г. установил следующее правило: когда какая-либо физическая система приходит в тепловое равновесие, поглощаемая телом энергия и отдаваемая им в форме излучения становятся равны друг другу. Математически закон Кирхгофа записывается в следующем виде:

E(ν,T)/A(υ,T) = ε(ν,T),

где E(ν,T) — излучательная способность тела, зависящая от частоты излучения v и от температуры Т, A(v,T) — поглощательная способность тела, ε(ν,T) — введенная Кирхгофом универсальная, единая для всех тел функция.

Кирхгоф ввел в физику чрезвычайно важное понятие абсолютно черного тела, т. е. тела, поглощающего всю падающую на него энергию независимо от частоты излучения. Для такого тела

A(ν,T) = 1.

В природе таких тел нет, но в качестве аналога абсолютно черного тела можно использовать полость с небольшим отверстием, внутренние стенки которого хорошо проводят теплоту (рис. 16). В таком ящике излучение, попадающее внутрь полости, испытывает многократные отражения от стенок и в конце концов полностью поглощается. Кирхгоф обратил внимание на то, что для абсолютно черного тела А(у, Т) = 1 и функция ε(ν,T) приобретает физический смысл его излучательной способности. Найти явный вид этой функции в виде математического соотношения (формулы) — значило решить одну из задач физики излучения, поскольку функция ε(ν,T) едина для всех тел.

Рис.16. Модель абсолютно черного тела
Рис.17. Распределение энергии в спектре излучения абсолютно черного тела[5] 

Идею экспериментального определения функции ε(ν,T) предложил сам Кирхгоф. Из небольшого отверстия в стенке полости абсолютно черного тела надо вывести излучение, а затем разложить его в частотный спектр. Преодолев экспериментальные трудности, физики к началу XX в. уже знали экспериментальную зависимость ε(ν,T) (рис. 17).

Однако получить теоретическую формулу, совпадающую с полученными экспериментальными данными, долгое время никому не удавалось. С точки зрения истории развития физики эти трудности легко объяснить. Излучение долгое время представляло для ученых новый и трудный для изучения объект. Со времен Максвелла физики знали, что излучение имеет электромагнитную природу, но найти теоретический подход к описанию свойств излучения было непросто. Характерно, что для теоретического обоснования экспериментально полученного закона излучения абсолютно черного тела применялись термодинамические методы и принципы. Еще Кирхгоф применял для доказательства своего закона термодинамическое правило, согласно которому достигнутое в изолированной системе равновесие сохраняется сколь угодно долго и не может быть нарушено теплообменом между частями системы. Следовательно, излучающее тело можно представлять заключенным в оболочку постоянной температуры и непроницаемую для излучения. В результате теплообмена тело принимает температуру оболочки.

вернуться

5

λ = с/ν, где λ — длина волны света, с — его скорость, ν — частота.