Выбрать главу

Первые попытки объяснения причин движения различных тел были предприняты еще в Древней Греции. Аристотель, например, разделил все тела на «тяжелые» и «легкие». Тяжелые тела (камень) падают вниз, стремясь достичь введенного философом некоего «центра мира», легкие (дым от костра) улетают вверх. Таким образом, падение тел у Аристотеля было естественным движением, совершавшимся без приложения извне каких-либо сил (впрочем, тогда не было и самого понятия «сила»). Аристотель утверждал также, что легкие тела, например пушинки, должны падать медленнее тяжелых. Его авторитет был настолько велик, что вплоть до XV в. эти наивные объяснения считались единственно верными.

С объяснением движения планет, казалось, все было гораздо проще: все молчаливо предполагали, что их движением управляют боги. Даже Коперник обходил молчанием этот вопрос. Сведений о смещениях планет скопилось так много, что, обработав эти наблюдения, немецкий астроном И. Кеплер (1571-1630) вывел законы их движения.

Обратим внимание на то, что законы движения планет были установлены раньше понимания их причин. Это не единственный пример такого рода в науке, так же обстояло дело при открытии периодического закона элементов Д.И. Менделеевым, при создании первой модели атома Н. Бором и т. д. Во всех случаях это было для ученых дополнительным стимулом в исследовании тайн природы.

Справедливо заметить, что Кеплер довольно близко подошел к пониманию причин движения, высказав предположение, что все тела взаимно притягиваются и что сила притяжения прямо пропорциональна массам тел и обратно пропорциональна квадрату расстояния между ними. Однако признать, что силы тяготения являются причиной движения планет, Кеплер не отважился. В 1674 г. англичанин Р. Гук показал, что движение планет по эллиптическим орбитам согласуется с предположением о том, что все они притягиваются Солнцем, но не смог вывести законы этого притяжения.

Решающий шаг вперед сделал итальянский ученый, основоположник экспериментальной физики Г. Галилей (1564-1642). Он решил проверить утверждение Аристотеля о разных скоростях падения различных по массе тел и, согласно легенде, сбросил с вершины знаменитой Пизанской башни чугунное ядро и деревянный шар. Резко различающиеся по массе предметы упали на Землю одновременно. Из этого опытного факта Галилей сделал фундаментальный вывод — все тела падают на Землю с одинаковым ускорением. Он же и измерил значение этого ускорения, которое с учетом последующих уточнений оказалось равным

g0 = 9,8 м/с2.

«Непосредственный опыт всегда очевиден, и из него в кратчайшее время можно извлечь пользу». 

Открытие закона тяготения английским физиком И. Ньютоном служит блестящим подтверждением этого меткого замечания. Ньютон впервые связал два факта — ускорение свободного падения тел на Земле и период обращения Луны вокруг Земли. Обратим внимание на то, что эти данные, казалось бы, имеют различную природу — вполне «земное» ускорение и движение небесного тела. Однако Ньютон видел причину движения любых тел в их взаимодействии между собой. Этим взаимодействием является их взаимное притяжение. Ньютон сделал шаг огромной обобщающей важности — силы тяготения как на Земле, так и в космосе имеют одинаковую природу.

«Еще почти никогда в истории, меньше всего в наши дни, когда столько людей занимается наукой, не бывало, чтобы та самая голова, которая впервые натолкнулась на ту или иную идею, до конца исчерпала бы ее. Почти все идеи были предугаданы, подготовлены и слегка намечены, прежде чем являлся наконец тот, кто разрозненному материалу придавал целостность».

Ньютон впервые дал математическую формулировку закона всемирного тяготения:

F = G∙Mm/r2

где F — сила взаимного притяжения, действующая между двумя телами массами M и m, удаленными друг от друга на расстояние г. Коэффициент G — гравитационная постоянная, значение которой было измерено Г.Кавендишем в 1798 г.:

G = (6,673 ± 0,003)∙10-11 м3/(с2∙кг).

Закон всемирного тяготения был опубликован И. Ньютоном в его знаменитом труде «Математические начала натуральной философии» одновременно с открытыми им же тремя законами движения (динамики). Применение закона всемирного тяготения (1) и второго закона динамики Ньютона