(3)
Если в процессе расчёта по второй части нашего Правила окажется, что «4-Rem плюс дважды 7-Rem» кратно 7, то k станет равным h; тогда сразу переходим к третьей части.
{Так, если нужен 1731 г. н. ст., то говорим: «15, 16, 17, a и h суть 7 и 3; 1731; 8 и минус 6 будет 2; 22 и 7 будет 29; дефект равен 1; 0 и 3 будет 3, что дотягивает; прибавляем 22; 25 марта».} [22]
(4)
Есть одна дата (и только одна, насколько мне известно), в отношении которой данное Правило не срабатывает. В 1954 году по новому стилю Пасха приходится на 18 апреля; настоящее же Правило даёт 25-е. Совершенно не могу объяснить этого весьма любопытного отклонения [23].
5. Примеры для образца
(1)
Год 853.
«Старый стиль; a и h суть 15 и 6; 4-Rem; 53, 5, 13; 1; 7-Rem; 853; 8, 5, 13; 6; 1 и 12 будет 13; 26 и 6 будет 32; k равно 4.
a и k суть 15 и 4; 853; 4 и 5 будет 9; 4 и 13 будет 17; 187 и 15 будет 197, 202; дефект равен 8; 7 и 4 будет 11, что дотягивает; вычитаем 9; 2 апреля».
(2)
Год 1654 (н. ст.)
«15, 16; a и h суть 8 и 2; 4-Rem; 54, 5, 14; 2; 7-Rem; 1654; 16, 25, 44; 2; 2 и 4 будет 6; 12 и 2 будет 14; k равно 0.
a и h суть 8 и 0; 1654; 8 и 5 будет 13; 6 и минус 5 будет 1; 11 и 8 будет 19; дефект равен 11; 7 и 0 будет 7, что не дотягивает; вычитаем 2; 5 апреля».
(3)
Год 1654 (ст. ст.)
«Старый стиль; a и h суть 15 и 6; 4-Rem; 54, 5, 14; 2; 7-Rem; 1654; 16, 25, 44; 2; 2 и 4 будет 6; 12 и 6 будет 18; k равно 4.
a и k суть 15 и 4; 1654; 8 и 5 будет 13; 6 и минус 5 будет 1; 11 и 15 будет 26; дефект равен 4; 0 и 4 будет 4, что дотягивает; прибавляем 22; 26 марта».
(4)
Год 1881 (н. ст.)
«a и h суть 7 и 4; 4-Rem; 81; 1; 7-Rem; 1881; 18, 48, 61; 5; 1 и 10 будет 11; 22 и 4 будет 26; k равно 5.
a и h суть 7 и 5; 1881; 9 и 8 будет 17; 8 и 11 будет 19; 0 и 7 будет 7; дефект равен 23; 21 и 5 будет 26, что дотягивает; вычитаем 9; 17 апреля».
(5)
Год 1881 (ст. ст.)
«a и h суть 15 и 6; 4-Rem; 81; 1; 7-Rem; 1881; 18, 48, 61; 5; 1 и 10 будет 11; 22 и 6 будет 28; k равно 0.
a и k суть 15 и 0; 1881; 9 и 8 будет 17; 8 и 11 будет 19; 0 и 15 будет 15; дефект равен 15; 14 и 0 будет 14, что не дотягивает; вычитаем 2; 12 апреля».
6. Примеры для упражнения
Для того из читателей, кто не обладает «Календарной книгой» профессора Де Моргана, ниже приведены сто различных дат, на которых он может поупражняться; ответы помещены в следующем разделе.
7. Ответы
СТИХОТВОРЕНИЯ
Мораль: «Ничего нельзя!» [24]
22
Считаем нужным напомнить нашему читателю следующее. В данной работе выражение «Пасха по старому стилю» соответствует нашей православной пасхе (а до 1582 года повсеместно также и католической), и для неё мы получаем по формулам Гаусса — Доджсона действительно даты
23
Тут какая-то странность. Из книги Роуза Болла Кэрроллу должно было быть известно хотя бы о ещё одном исключении — это 1981 год, дата Пасхи в котором не вполне соответствует расчётам способом Гаусса — Доджсона. На деле исключений больше, но и они подчиняются особому правилу. Чтобы пояснить читателю, в чём тут дело, мы должны разобрать природу «нового стиля» в отношении католической Пасхи в данной работе.
В то время как старый, юлианский, и новый, григорианский, календари предназначены для установления движения по семи дням недели определённых
Когда труды математиков увенчались успехом, эту реформу, то есть переход к пасхалии нового стиля, оказалось возможным осуществить на практике изящнейшим способом — через введение в юлианскую пасхалию четырёх поправок: двух солнечных, одной лунной и одной чисто математической. Две солнечные поправки общеизвестны: это изъятие,
Для того, чтобы разъяснить последнюю интересующую нас здесь поправку, коснёмся структуры реформированного лунного календаря. Реформаторы выстроили
Необходимость этих исключений математически видна из того, что величина
в этих двух случаях равную 1, а в прочих, как и в юлианском календаре, 0.
С учётом этой поправки формулы Гаусса для расчёта католической Пасхи по григорианскому календарю принимают вид
где:
Отсюда следует сложносоставной характер тех двух исключений, которые, как указывает Роуз Болл, должны учитываться при расчёте Пасхи по формулам без поправки. В самом деле, ошибка возникает не всякий раз, когда
24
Это и пять следующих стихотворений извлечены составителями собраний Кэрролловых сочинений из рукописного журнала «Полезная и назидательная поэзия», который маленький Чарльз Лютвидж «издал» для своих домашних в ту эпоху, когда ему было тринадцать лет.
Согласно английским представлениям, традиционным для детской, добрые феи и эльфы — это нечто вроде наставников, которые заботятся о том, чтобы ребёнок усваивал хорошие манеры, учился и вообще рос пай-мальчиком (или девочкой). Обращение Кэрролла к подобным представлениям читатель встретит также в главах «Сильвия-фея» и «Месть Бруно» позднего романа «Сильвия и Бруно». Но до этого, в поэме «Три голоса» (1856) укоризненный голос сказочного существа окажется трансформированным в три мрачных речевых потока, исходящих от суровой женщины необозначенного возраста.