Было бы неплохо разъяснить действительную сущность трёх процедур, описанных в девятом предложении предыдущего абзаца, а именно 1) вносим 1 в первый столбец, 2) трижды 1 — во второй, 3) приплюсовываем это новое значение, не забывая вычесть 7000. Сущность 2) и 3), взятых в совокупности, заключается в увеличении второго столбца на 3 и в уменьшении его на 7000, то есть в уменьшении его на 7000 – 3, что равняется 6997. Сущность же 1) заключается в оправдании этого 6997, вычтенного, таким образом, из остатка (а последний тем самым оказался сведён к настоящему остатку), добавлением единицы к частному (которое, таким образом, превращается в настоящее частное).
Правило для случая (3) при знаке «+» может быть выведено из вышеизложенного правила простой заменой знака при k. Это, однако, вводит одно новое явление, которое должно быть предусмотрено следующей дополнительной оговоркой.
Когда вы прибавляете ко второму периоду, [взятому вместе] с его префиксом, число из первого столбца, увеличенное в (– k) раз, то есть когда вы вычитаете увеличенное в k раз это число из второго периода, [взятого вместе] с его префиксом, иногда может случиться так, что вычитаемое превосходит уменьшаемое. В этом случае вычитание будет оканчиваться цифрой-минус, которую можно пометить звёздочкой. Теперь ищем, какое количество наших делителей следует прибавить ко второму столбцу, чтобы погасить эту цифру-минус, и вносим это количество, помеченное звёздочкой, в первый столбец, а это кратное нашего делителя — во второй; затем проводим черту под вторым столбцом и приплюсовываем это новое значение.
В качестве примера возьмём новое делимое, но оставим прежний делитель, изменив знак при k, так что делителем станет число 7003 (то есть 7t3 + 3). Наша задача, подготовленная для решения, будет выглядеть так:
По окончании решения вид у неё будет такой:
Начало хода рассуждения таково.
Делим 6504 на 7 и вносим частное от деления, 929, в первый столбец, а остаток, 1, пишем поверх второго периода. Затем вычитаем из 1318 утроенное 929, внося результат во второй столбец следующим образом. «27 из 8 [вычесть] нельзя, но 27 из 28 будет 1». Вносим 1, занятое 2 в уме. «8 из 1 [вычесть] нельзя, но 8 из 11 будет 3». Вносим 3, занятое 1 в уме. «28 из 3 [вычесть] нельзя, но 28 из 33 будет пять». Вносим 5, занятое 3 в уме. «3 из 1 будет минус 2». Вносим его со звёздочкой. Отметив, что для погашения этого минус 2 достаточно будет прибавить делитель единожды, вносим (–1) в первый столбец, а 7003 — во второй; затем проводим черту под вторым столбцом и приплюсовываем это новое значение; в итоге получаем 5534. Затем суммируем первый столбец снизу доверху и вносим результат, 928, в графу «Частное». Теперь берём 5534 как новый первый период, а третий период, 972, как новый второй период, и продолжаем как ранее [9], следующим образом. Проводим двойную черту под 5534 и делим его на 7, внося частное от деления, 790, под двойную черту, а остаток, 4, ставя над третьим периодом. Затем вычитаем из 4972 утроенное 790, занося результат, 2602, в третий столбец; отмечаем для себя, что он не содержит цифр-минус. Затем суммируем второй столбец снизу вплоть до ближайшей двойной черты и вносим результат, 790, в графу «Частное». Теперь берём 2602 как новый первый период, а конечный период, 526, как новый второй период, и продолжаем как ранее следующим образом. Проводим двойную черту по 2692 и делим его на 7, внося частное, 371, под двойную черту, а остаток, 5, ставя над конечным периодом. Затем вычитаем из 2556 утроенное 371, занося результат, 4413, который, как можно было предвидеть, непременно будет меньше делителя, в ячейку «Остаток». Затем суммируем третий столбец снизу вплоть до ближайшей двойной черты и заносим результат, 371, конечным периодом в графу «Частное».