Ч. Л. Доджсон
К. Ч., Оксфорд
P. S. Сумма всех периодов даёт нам, для периодов из 1, 2, 3 и т. д., разрядов, критерий делимости на 9, 99, 999 (= 27 × 37) и т. д., или для любого множителя этих чисел. Для этого метода также можно выработать правило, аналогичное вышеизложенному; например, для критерия в отношении 999 размечаем на периоды по три, пишем 000 поверх крайнего правого периода и вычитаем, записывая разность поверх следующего и так далее. Следовательно, если так же случится, что проверочное число обратится в нуль, верхняя строка (за опусканием 000) станет частным от деления данного числа на 999.
Вероятно, похожие правила можно выработать для большинства простых чисел. Я сам разработал достаточно простые правила для 17 и 19, но подобные процедуры скорее любопытны, чем удобны.
Натолкнувшись на следующий способ вычисления в уме дня недели для любой заданной даты, шлю его Вам в надежде, что он заинтересует некоторых из Ваших читателей. Сам я считаю медленно; и поскольку, как я обнаружил, среднее время, затрачиваемое мной на решение всех таких задач, составляет двадцать секунд, то для тех, кто считает быстро, хватит, несомненно, и пятнадцати.
Берём заданную дату четырьмя частями, а именно: количество сотен, количество лет сверх, месяц, день.
Вычисляем следующие четыре величины, прибавляя каждую, по её нахождении, к общей сумме предыдущих величин. Если какая-то величина либо такой итог превышает 7, делим на 7 и сохраняем один лишь остаток.
Член «сотни». — Для старого стиля (который закончился 2 сентября 1752 года), вычитаем из 18. Для нового стиля (который начался 14 сентября [того же года] [12]) делим на 4, избыток отнимаем у 3, оставшееся умножаем на 2.
Член «годы». — Складываем вместе количество дюжин, избыток и количество четвёрок в избытке.
Член «месяц». — Если он начинается либо заканчивается на гласную, вычитаем число, обозначающее его номер в году, из 10. Результат плюс количество дней в нём дают член следующего месяца. Значение для января есть «0», для февраля или марта (третий месяц) будет «3», для декабря (двенадцатый месяц) будет «12».
Член «день» есть число месяца.
Полученный таким образом итог нужно подправить вычитанием «1» (но сперва добавив «7», если итог равен «0»), если дата приходится на январь или февраль високосного года; следует помнить, что всякий год, делящийся на 4, будет високосным, за исключением лишь тех сотенных лет для нового стиля, когда количество сотен не делится на 4 (например, 1800-й год).
Окончательный итог даёт день недели, причём «0» означает воскресенье, «1» — понедельник и так далее.
ПРИМЕРЫ
18 сентября 1783 года
17, делённое на 4, оставляет «1» сверх; 1 из 3 даёт «2»; дважды 2 будет «4».
83 есть 6 дюжин и 11, что даёт 17; плюс 2 будет 19, т. е. (после деления на 7) «5». В итоге 9, т. е. «2».
Член для августа есть «8 от 10», т. е. «2», а потому, для сентября, он есть «2 плюс 31», т. е. «5». В итоге 7, т. е. «0», который выходит.
18 даёт «4». Ответ: четверг.
23 февраля 1676 года
16 из 18 даёт «2».
76 есть 6 дюжин и 4, что даёт 10; плюс 1 будет 11, т. е. «4». В итоге «6».
Член для февраля есть «3». В итоге 9, т. е. «2».
23 даёт 2. В итоге «4».
Поправка для високосного года даёт «3». Ответ: среда.
Льюис Кэрролл [13]
1. Введение
В основе данного Правила лежит формула Гаусса; Гауссово доказательство этой формулы приведено во втором томе «Monatliche Correspondenz» Цаха (август 1800 года, страницы 221—230), по каковой публикации эту формулу воспроизвёл мистер У. У. Роуз Болл в своих «Математических <эссе и> развлечениях», выпущенных издательством «Макмиллан и Ко» [14]. Единственная отличительная черта моей версии данного Правила состоит в его большей простоте. Моим способом результат может быть посчитан в уме, без особого труда, за полминуты; метод же Гаусса определённо потребовал бы гораздо большего времени, как и гораздо больших усилий при вычислении в уме.
Перед тем, как приступить к самому Правилу, читателю следует овладеть кое-какими необходимыми арифметическими процедурами, изложенными здесь же.
11
Опубликовано в «Nature», т. 35, 517 (от 31 марта 1887 года). Данная статья — единственная из трёх, появившихся в данном издании, что была подписана «Льюис Кэрролл».
13
Таким образом, данный Способ есть приноровление к нашей способности вычислять в уме общей формулы для нахождения дня недели Д, которую можно записать в виде (см., например,
Д = |(Г + М + Ч)/7|
(прямые скобки обозначают остаток от деления нацело). Здесь Г = | (J + {J/4})/7| есть годовой член, известный с VIII века как конкурента, или солнечная эпакта (на Руси — вруцелетная буква); его и составляет сумма (опять же по модулю семь) Доджсоновых члена «сотни» и члена «годы»; М — это месячный член из Доджсоновой таблицы, аналогичный старинной, из похожей таблицы, величине, называемой солнечный регуляр, а Ч — заданное число месяца. Выражение в фигурных скобках обозначает целую часть от деления.
Работа Доджсона по упрощению расчётов в уме дня недели для любой даты в следующем веке была интенсивно продолжена. На Западе дальнейшая попытка упрощения вызвала к жизни так называемое «правило Судного дня» Джона Хортона Конвея (статья «Завтра — новый день после Судного дня» в журнале «Eureka», октябрь 1973 года, затем два издания (второе — 1982 год в четырёх томах) книги «Winning Waysfor Your Mathematical Plays» с соавторами). Приведём краткое описание этого Правила. Оно заключается в предварительном нахождении двух величин, а именно:
1)
2)
14
Названная книга Роуза Болла и поныне чрезвычайно популярна. Существует даже её перевод на русский язык (
«Пусть
(1) Разделить число, обозначающее год, на 4, на 7 и на 19, а соответствующие остатки от деления нацело обозначить как
(2) Разделить 19
(3) Разделить 2
(4) Тогда пасхальное полнолуние состоится через
Юлианский календарь свободен от подобных исключений, в григорианском же они появляются, правда очень редко (cм. прим. [23] —
Остаётся только установить значения