Выбрать главу

— Верно. А так как у Мистера-Твистера Джерамини отнял в три раза больше скарабеев, чем у Чёрного Льва, число это равно Зх. И значит, осталось у него (2а—Зх) скарабеев. Известно, что после этого грабежа у обоих полицейских денег оказалось поровну. Поэтому мы можем смело приравнять (ах) и (2а—Зх). Вот вам и уравнение: (ах) = (2а—Зх)… Ну, президент, включайся, решай!

Нулик надулся.

— Да, оставили мне самое неинтересное…

Но всё-таки обиженно засопел над блокнотом:

— Переносим неизвестные в одну часть равенства, а известные — в другую. Тогда 2х = а. Отсюда x = 1/2a. Что из этого вытекает? — Глаза президента вдруг оживились, голос окреп. — Из этого вытекает, что Джерамини заграбастал половину львиного богатства.

— Так, — кивнул Сева. — А какую часть своей добычи отдал Шейк-Твист?

— Не беспокойся, подсчитаем и это! — бодро пообещал Нулик. — Если x = 1/2a, то Зх3/2а. Так? А раз у Мистера-Твистера было до делёжки скарабеев, то отдал он 3/4 своей добычи: ведь 3/2а — это 3/4 от 2а. Вот и всё.

— Не совсем, — сказала Таня. — Остаётся узнать, во сколько раз у Джерамини оказалось денег больше, чем у обоих полицейских, вместе взятых.

— Узнаем и это, — заверил её Сева. — У каждого из обделённых осталось по 1/2а скарабеев, а Джерамини забрал 1/2а + 3/2а, то есть 2а скарабеев. Значит, у него оказалось их вдвое больше, чем у обоих полицейских вместе.

Тут пришла официантка и все принялись за еду.

— Глядите-ка, — сказал вдруг Олег, вертя в пальцах бумажную салфетку. — Эта салфеточка нам как нельзя кстати. Она словно нарочно сделана для третьей задачи Магистра о треугольных галстуках. Ведь она сама треугольная!

Нулик грустно посмотрел на недоеденное пирожное.

— Ничего, старина! — утешил его Олег. — В конце концов, есть и решать задачу можно одновременно. В общем, Единичке нужно было разделить большой треугольный лоскут на пять небольших треугольников так, чтобы площади их относились, как 1:2:2:3:4.

Он вынул карандаш и соединил середины боковых сторон треугольника, иначе говоря, провёл на салфетке одну из средних линий треугольника.

— Что у нас получилось? — спросил Олег. — Средняя линия разделила треугольник на две части. Одна из этих частей тоже треугольник, другая — трапеция. Все знают (а кто не знает, пусть докажет это сам), что площадь этого нового маленького треугольника в три раза меньше площади трапеции. Теперь проведём обе диагонали трапеции. Обратите внимание на то, что диагонали эти по совместительству представляют собой и медианы большого треугольника. Ведь они проведены в середине его боковых сторон! Все видят, что диагонали разделили трапецию на четыре части — на четыре треугольника. Самый маленький из них — верхний, два боковых немного побольше, а самый большой — нижний. Узнаем, каковы площади этих треугольников.

— Узна́ем! — решительно повторил Нулик, но тут же, впрочем, замолчал.

— Во-первых, нетрудно доказать (и пусть каждый опять-таки сделает это сам), что оба боковых треугольника равновелики, то есть имеют одинаковые площади. Во-вторых, приняв площадь самого маленького из этих четырёх треугольников за единицу, выясним, во сколько раз каждый из остальных больше самого маленького.

Сева хлопнул себя по лбу.

— Стоп! Кажется, нашёл. Ведь медианы треугольника делятся в точке пересечения на части, которые относятся, как 1:2. Так? А так как высоты самого маленького треугольника и любого из боковых одинаковы, то площади их тоже относятся, как 1:2.

— Не в бровь, а в глаз! — констатировал Олег. — Большая часть задачи, таким образом, решена. Остаётся выяснить, во сколько раз площадь нижнего, самого большого треугольника больше площади самого маленького, принятого за единицу.

— И это тоже нетрудно! — подхватил Сева. — Ведь средняя линия, как известно, равна половине основания. А так как нижний и верхний треугольники, входящие в трапецию, подобны, то и высо́ты их тоже одна вдвое меньше другой. Ну, а раз так, то площади обоих треугольников относятся, как 1:4. Вот трапеция и разделилась на треугольники, площади которых относятся, как 1:2:2:4.

— Отлично! — сказал Олег. — Далеко пойдёте, молодой человек! А теперь ещё одно небольшое усилие: надо вспомнить, во сколько раз площадь первого отделённого нами треугольника меньше площади трапеции.