1000a + 100b + 10c + d.
— Здесь, — объяснила она, — а — число тысяч, b — число сотен, с — число десятков и d — число единиц. Теперь изобразим с помощью этих букв те двузначные числа, которые остались на каждой половинке ассигнации. Получим
10а + b и 10c + d.
Вычтем оба эти двузначные числа из нашего четырёхзначного:
1000a + 100b + 10c + d — (10a + b) — (10c + d).
После преобразований из всего этого получается вот что:
990а + 99b.
Совершенно ясно, что это число непременно разделится на 99 и в ответе получится 10а + b. А это и есть то самое двузначное число, которое оставалось на левой половинке ассигнации.
— Тебе ещё бы две косички — не отличить от Единички! — экспромтом выпалил Сева и тут же спросил: — А что, твой результат справедлив только для четырёхзначных чисел?
— Это уж ты сам выясняй, — отвечала Таня. — А теперь нам и вправду пора в кино.
— В кино, в кино! — захлопал в ладоши Нулик. — Тамошний брегет, наверное, вот-вот зазвонит…
— Ба! — встрепенулся Сева. — А про брегет-то мы и забыли. Тут наш Магистр опять малость оплошал. А может, и не он, а хозяин кафе. Где это он нашёл у Пушкина «желудок — верный наш брегет»?
— Как — где? — удивился я. — В «Евгении Онегине», конечно.
— Что-то не помню! — пробурчал Сева. — Есть там «пока недремлющий брегет, не позвонит ему обед»… Есть «но зов брегета им доносит, что новый начался балет».
— Правильно, — кивнул я, — только это строчки из первой главы. А «желудок — верный наш брегет» — из пятой. Так что на сей раз Магистр ничего не напутал.
— Вот мы говорим «брегет, брегет», — сказал Нулик, надевая пальто, — а что это такое?
— Всего лишь старинные часы со звоном. И называются они так по имени их изобретателя, парижского часовых дел мастера Брегета.
— Товарищи! — закричал президент. — Прошу! Умоляю! Поторопитесь! Зов брегета нам доносит, что новый начался сеанс.
Ну и память у этого малыша! Только раз слышал, а уже запомнил, да ещё перекроил на свой лад! Поистине волшебное дитя!
А в кино в тот день мы всё-таки опоздали и хроники не видели. Нулик по этому поводу выдал историческую фразу: «Заниматься наукой надо в свободное от кино время!»
Репортаж рассеянного Магистра
2 МАРКО 2
Международный автобус мчит нас с Единичкой в Сьерра-химеру. Драгоценный конверт в наших руках, и, следовательно, разгадка тайны исчезнувшей марки близка. Но недаром говорят: близок локоть, да не укусишь… От избытка предположений у меня лопается голова, и чтобы она действительно не лопнула, Единичка придумала небольшую разрядку.
— Как вы думаете, — спросила она, — чего больше: целых положительных чисел или их квадратов?
Это было так неожиданно, что я сразу и не понял, чего она от меня хочет, но тут же рассмеялся и ответил на её более чем детский вопрос:
— Разумеется, целых положительных чисел значительно больше, чем их квадратов.
Для наглядности я написал на бумажке последовательные квадраты натурального ряда чисел: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961.
— Взгляни сюда, — сказал я Единичке, — видишь, как редко встречаются в натуральном ряду квадраты целых чисел! Поначалу они расположены ещё более или менее близко: 1, 4, 9, 16, 25, 36… Но чем дальше, тем они реже. Вот, например, в третьей сотне первый квадрат 225, за ним сразу следует 256, потом 289. А в десятой сотне квадраты встречаются и того реже. Их всего два: 900 и 961. Теперь представь себе десяти- или стозначные квадраты, — между ближайшими из них такие расстояния, что от одного до другого нужно лететь самолётом. Так что тут и двух мнений быть не может: квадратов куда меньше, чем натуральных чисел.
Единичка, надо ей отдать справедливость, слушала меня не перебивая, но затем сказала:
— А по-моему, раз каждое целое число можно возвести в квадрат, значит, чисел и их квадратов совершенно одинаковое количество.
Ну и характерец! Знает ведь, что неправа, а спорит.
— Что с того, что у каждого числа есть свой квадрат? — возмутился я. — Выкинь из натурального ряда все числа, представляющие собой квадраты, и ты увидишь, как мало пробелов образуется в этом ряду. Нет, квадраты твои просто тонут в общей куче чисел. И не спорь, пожалуйста!