Выбрать главу

— Все видят, — сказал Нулик.

Тогда Таня воткнула иглу циркуля в левый конец диаметра и, повернув циркуль против хода часовой стрелки, засекла карандашом небольшую дугу. Потом она вставила иголку в середину полуокружности и тем же радиусом засекла другую дугу, которая пересеклась с первой.

— Теперь смотрите внимательно, — сказала Таня. — Из точки пересечения этих двух дужек тем же раствором циркуля, то есть радиусом полукруга, провожу внутри нашего полукруга дугу. Эта дуга начинается из левого конца диаметра и доходит до середины полуокружности. Таким образом, полукруг разделился на две неравные части, и площадь большей из этих двух частей равна r2, то есть равновелика квадрату со стороной, равной радиусу… Пожалей своё горло, Нулик! Я и так знаю, что ты хочешь сказать, и потому прямо перехожу к доказательству.

Таня соединила концы диаметра с серединой полуокружности. Получился равнобедренный треугольник.

— Доказать, что боковая сторона треугольника разделила меньшую часть полукруга на два равновеликих сегмента, нетрудно. Потому пусть каждый сделает это сам. А теперь посмотрите сюда, на эти три сегмента. Все они образованы боковыми сторонами треугольника, которые одновременно и хорды полукруга. Стало быть, площади этих трех сегментов равны между собой. А раз они равны, значит, треугольник и большая часть полукруга тоже равновелики. Ведь сегмент, отнятый от треугольника слева, прибавляется к этому треугольнику справа! А так как площадь треугольника равна r2 (ведь основание у него 2r, высота r, а 21/2r=r2), то значит, и площадь искомой нами части полукруга тоже равна r2.

— Ловко доказано… — вздохнул Сева.

— Ловко, но длинновато, — заметил Олег. — Я бы доказал это проще.

Он тут же вычертил новый полукруг и циркулем отделил от него ту часть, что полагается. Затем на левой половине полукруга построил квадрат, приняв за сторону вертикальный радиус.

— А теперь смотрите внимательно, — продолжал Олег. — Видите, из каких частей состоят квадрат и отделённая часть полукруга?

— Видим, — прохрипел Нулик. — Они имеют по общей части и… — Тут он запнулся.

— …и по равному сектору — четверти круга, — закончил его мысль Олег.

— Вот именно. А это значит, что большая часть полукруга и квадрат равновелики, — заключил президент и добавил неожиданно чистым голосом: — Что и требовалось доказать.

— Редкий случай в медицине! — заметил Сева. — Лечение геометрией.

— А ведь в самом деле прошло! — радовался Нулик. — Ой, как легко стало! Точно с меня гордиеву петлю сняли…

— Что-то ничего о такой не слыхал, — усмехнулся Сева.

— Как это не слыхал! Почитай письмо Магистра.

— Все равно, нет гордиевой петли. Есть гордиев узел. Такое же иносказательное выражение, как «вернёмся к нашим баранам». Только баранам около четырехсот лет, а узлу более двух тысяч.

— А сам ты узнал об этом только вчера из какой-нибудь энциклопедии, — как бы невзначай проронила Таня.

— Чего и вам желаю, — отбил удар Сева, ничуть не смутившись. — И не надо мне будет тогда рассказывать, что Александр Македонский во время похода в Малую Азию попал во фригийский город Гордий, иначе — Гордион, расположенный недалеко от нынешней столицы Турции Анкары?. В городе показали Александру колесницу, у которой дышло и хомут были связаны тугим узлом, да так крепко, что развязать их не было никакой возможности. Тамошний оракул — сказали Александру — предрёк, что человек, который сумеет распутать этот узел, станет владыкой мира.

— Ну, дальше всё ясно, — сказал Нулик. — Александр, конечно, узел распутал.

— Сразу видно: не знаешь ты Александра Македонского! Он попросту вынул меч и разрубил заколдованный узел одним ударом. Отсюда «разрубить гордиев узел» значит действовать в запутанных обстоятельствах смело и решительно.

Севин рассказ привёл президента в необычайное возбуждение.

Разрубая воображаемый узел, он вдруг так хватил кулаком по столу, что стеклянная вазочка для карандашей полетела на пол и разбилась вдребезги.

— Александр Македонский, конечно, был великий человек, но зачем же стулья ломать! — кротко заметил Сева после небольшой паузы.

— Какие стулья? — пролепетал президент, растерянно разглядывая стеклянные брызги на полу.

— Да нет, это я к слову, — улыбнулся Сева. — Из гоголевского «Ревизора»!