Так он играл довольно долго, ожидая, вероятно, исчерпывающего объяснения со стороны. Но объяснения всё не было. По правде говоря, я и сам не знал, каким образом объяснить ребятам этот забавный парадокс, чем-то похожий на софизмы Зенона, которыми мы занимались ещё в прошлом году. Уж больно это не просто!
— Мне кажется, дело здесь в том, — решился я наконец, — что слово «середина» имеет смысл лишь тогда, когда речь идёт о целом отрезке, в данном случае о целом карандаше. Как только карандаш разрезан пополам, слово «середина» теряет свой смысл. Карандаш, как целое, исчез. Остались две его половинки, и у каждой из них своя середина. Кроме того, середина — это точка, а точка в математике — понятие условное. Нет у неё ни длины, ни ширины, ни толщины. Значит, условно и понятие «середина». Вообразить точку, называемую серединой, можно, но воткнуть в неё реально существующую иглу — пусть самую тонкую, самую острую — нельзя.
— Но ведь втыкаем же мы иглу циркуля в центр окружности? — возразил президент.
Конечно, втыкаем, но неглубоко, — пошутил я. — И так как всякому овощу своё время…
— …не станем углубляться в этот вопрос! Это вы хотели сказать? — спросил Нулик язвительно.
Я с сожалением развёл руками.
— Что делать!
— Понимаю! — вздохнул президент. — Переходим к следующей задаче.
— К той, что задал Магистру Главный Кубист и Шарист? — спросил Сева.
— К той самой, — кивнул Нулик. — И какой же он неблагодарный, этот Кубист и Шарист! Магистр решил его задачу, а он даже спасибо не сказал!
— С чего ты взял, что Магистр решил задачу?
— А разве нет? Ведь шар в самом деле можно вписать в куб, и в кубе после этого ещё останется немножко незаполненного места. Стало быть, объём и поверхность куба чуть больше, чем у шара.
— Положим, не чуть, — сказал Сева, — а примерно раза в два. Но дело ведь не в этом, а в том, сколько потребуется бумаги, чтобы обклеить шарики и кубики с увеличенными в восемь раз объёмами.
— Наверное, для этого надо узнать, во сколько раз увеличилась при этом поверхность, — сообразил Нулик.
— Наконец я слышу речь не мальчика, но мужа! — сказал Сева, не устояв перед соблазном лишний раз процитировать Пушкина. — И ты сейчас сам убедишься, что это совсем нетрудно.
— Кому как! — мрачно буркнул Нулик.
— Начнём с шара, — продолжал Сева, не обращая внимания на эту реплику. — Сперва займёмся его объёмом. Как и всякий объём, объём шара измеряется в кубических единицах и пропорционален кубу его радиуса. Значит, если объём увеличился в восемь раз, то радиус увеличился только в два раза.
— Как так?
— Очень просто — ведь корень кубический из восьми равен двум. Теперь выясним, что станет с поверхностью шара. Как известно, поверхность шара измеряется в квадратных единицах и пропорциональна квадрату радиуса. Выходит, если радиус увеличился вдвое, то поверхность шара увеличится в два в квадрате раза, то есть в четыре, а не в восемь раз, как полагает Магистр.
— Понятно! — хмуро согласился Нулик. — Но теперь нам предстоит ещё вычислить объём и поверхность куба.
— Ну это легче лёгкого. Ведь объём куба пропорционален кубу его ребра, а поверхность — квадрату этого ребра. Значит, увеличь объём куба в восемь раз, поверхность его, как и поверхность шара, само собой увеличится…
— … в четыре раза! — поспешно завершил президент.
Итак, с шарами и с кубами покончили. Теперь можно было перейти к самому главному: к шифру загадочного телефона. И тут, словно почувствовав, что дело касается его лично, проснулся и громко залаял Пончик.
— Учуял преступников! — многозначительно поднял палец президент. — Собаки — у них такая интуация…
— Интуиция, Нулик, интуиция! — ангельским тоном поправил Сева и без всякого перехода спросил: — Кто из нас займётся вскрытием сейфа?
— Дело тёмное, — сказала Таня. — Поэтому предоставим его Олегу.
— Как опытный взломщик, могу сказать, что дело не такое уж тёмное, — усмехнулся Олег. — Была бы ты чуть внимательнее, так разгадала бы шифр сама.
— Я только одно знаю, — заявил Нулик, что в этом шифре десять цифр. Потому что дверца сейфа открылась после десяти поворотов диска.
— Весь вопрос в том, что это за цифры! — сказал Олег. — Давайте внимательно всмотримся в запись Единички. Что там написано? Там написано вот что:
1 5 xx 30 55 xx.
Неизвестными в этом шифре остаются два двузначных числа — те, что были в третьем и последнем карманчиках. Как их найти?