Выбрать главу

Вам следовало сложить 68 + 40 = 108 и 108 + 5 = 113 (итоговый ответ). Было ли вам проще? Если хотите проверить свои силы на большем количестве задач на сложение двузначных чисел, обратитесь к примерам, представленным ниже. (Ответы и ход вычислений приведены в конце книги.)

Сложение трехзначных чисел

Стратегия сложения трехзначных чисел точно такая же, как и двузначных: вы складываете слева направо и после каждого шага переходите к новой, более простой задаче на сложение.

Попробуем:

Вначале прибавляем к 538 число 300, затем 20, затем 7. После прибавления 300 (538 + 300 = 838) задача сводится к 838 + 27. После прибавления 20 (838 + 20 = 858) задача упрощается до 858 + 7 = 865. Такого рода мыслительный процесс может быть представлен в виде следующей схемы:

Все задачи на устное сложение можно решить таким способом, последовательно упрощая задачу до тех пор, пока не останется просто прибавить однозначное число. Обратите внимание, что пример 538 + 327 требует удержания в уме шести цифр, тогда как 838 + 27 и 858 + 7 — только пяти и четырех цифр соответственно. Если вы упрощаете задачу, решить ее становится легче!

Попробуйте решить в уме следующую задачу на сложение, прежде чем посмотрите наше решение

Вы упростили ее, складывая цифры слева направо? После сложения сотен (623 + 100 = 723) осталось сложить десятки (723 + 50 = 773). Упростив задачу до 773 + 9, в сумме получаем 782. В виде схемы решение задачи выглядит так:

Когда я решаю подобные задачи в уме, я не визуализирую числа, а пытаюсь слышать их. Я слышу пример 623 + 159 как шестьсот двадцать три плюс сто пятьдесят девять. Выделяя для себя слово сто, я понимаю, с чего начать. Шесть плюс один равняется семи, значит, моя следующая задача семьсот двадцать три плюс пятьдесят девять и так далее. Решая такие задачи, тоже делайте это вслух. Подкрепление в виде звуков поможет вам освоить этот метод гораздо быстрее.

Задачи на сложение трехзначных чисел на самом деле не бывают сложнее следующей:

Взгляните на то, как это сделается:

На каждом этапе я слышу (а не вижу) новую задачу на сложение. У меня в голове это звучит примерно так:

858 плюс 634 равно 1458 плюс 34,

равно 1488 плюс 4, равно 1492.

Ваш внутренний голос может звучать иначе, чем мой (не исключено, что вам удобнее видеть числа, а не слышать их), но, как бы там ни было, наша цель — «подкреплять» числа на их пути, чтобы не забыть, на каком этапе решения задачи мы находимся и не начинать все сначала.

Давайте еще попрактикуемся.

Вначале сложите в уме, потом проверьте вычисления.

Этот пример немного сложнее предыдущего, так как требует держать в уме числа на протяжении всех трех шагов.

Однако в нем можно воспользоваться альтернативным методом подсчета. Я уверен, что вы согласитесь: гораздо проще к 759 прибавить 500, чем 496. Так что попробуйте прибавить 500 и затем вычесть разность.

До сих пор вы последовательно расчленяли второе число, чтобы сложить его с первым. На самом деле не имеет значения, какое число разбивать на части, важно соблюдать порядок действий. Тогда вашему мозгу не придется решать, в какую сторону направиться. Если запомнить второе число намного легче первого, то их можно поменять местами, как в следующем примере.

Закончим тему сложением трехзначных чисел с четырехзначными. Так как память среднестатистического человека одновременно может удерживать только семь или восемь цифр, это как раз подходящая задача, с которой вы можете справиться, не прибегая к искусственным устройствам запоминания (таким как пальцы, калькуляторы или приемы мнемотехники из главы 7). Во многих задачах на сложение одно или оба числа заканчиваются на 0, поэтому уделим внимание примерам такого типа. Начнем с самого легкого:

Так как 27 сотен + 5 сотен равняется 32 сотням, мы просто прибавляем 67 с целью получить 32 сотни и 67, то есть 3267. Процесс решения идентичен для следующих заданий.

Поскольку 40 + 18 = 58, первый ответ — 3258. Во втором примере 40 + 72 в сумме больше 100, поэтому ответ будет 33 сотни с «хвостиком». Итак, 40 + 72 = 112, поэтому ответ — 3312.

Эти задачи легкие, потому что значащие цифры (отличные от нуля) в них складываются лишь один раз и примеры можно решить в одно действие. Если значащие цифры складываются два раза, то и действий понадобится два. Например: