Эта закономерность была несомненна. Чем дальше отстояли друг от друга числа, тем меньше становилось произведение. И насколько они отдалялись от 100? На 1, на 4, на 9, 16, 25… То есть на 1², 2², 3², 4², 5² и т. д. А потом мне стало интересно, работает ли эта закономерность для чисел, дающих другую сумму. Я решил попробовать 26:
И я снова увидел, что наибольшее произведение дало умножение двух одинаковых чисел. А потом произведение стало уменьшаться с интервалом сначала 1, потом 4, потом 9 и т. д. Еще несколько подобных примеров убедили меня, что закономерность была строгой (ее алгебраическое выражение я покажу чуть позже). Выяснил я и то, что ее можно применять для быстрого возведения чисел в квадрат.
Допустим, нам нужно знать квадрат 13. Вместо того чтобы умножать 13 × 13, можно сделать умножение попроще: 10 × 16 = 160. До правильного ответа уже рукой подать, и чтобы его получить, достаточно будет прибавить возведенное в квадрат 3 – число, составляющее разницу между 13 и числами, которые мы перемножили. То есть:
Можно взять еще один пример, скажем, 98 × 98. Для удобства к первому числу добавим 2 до 100, а от второго отнимем 2 до 96. Значит, к их произведению нужно будет прибавить 2². Вот наше уравнение:
Особенно легко применять эту схему к числам, которые заканчиваются на 5: если уменьшить и увеличить их на 5, оперировать придется круглыми числами. Например:
Теперь попробуем возвести в уме в квадрат 59. Увеличив и уменьшив это число на единицу, получим 59² = (60 × 58) + 1². Но как умножить в уме 60 на 58? Простой совет из двух слов: слева направо. Забудем на время про 0 и подсчитаем 6 × 58: 6 × 50 = 300 и 6 × 8 = 48. Потом сложим эти два результата (опять же, слева направо) и получим 348. И добавим ноль в конце, то есть 60 × 58 = 3480. Поэтому:
А вот алгебраическое доказательство этого метода (перечитайте это отступление после того, как во второй главе мы поговорим о разнице квадратов):
где A – число, возводимое в квадрат, d – разность с ближайшим круглым числом (формула, кстати, справедлива для любого d). Для примера возведем в квадрат 59: А = 59, d = 1, значит, формула превращается в (59 + 1) × (59 – 1) + 1², как и в предыдущем вычислении.
Теперь, когда вы профессионально возводите в квадрат двузначные числа, можно попробовать и трехзначные. Если помните, 12² = 144, значит:
Есть еще одна подобная формула, которая работает для любых двух чисел, близких к сотне. Человек, который становится случайным свидетелем таких вычислений, испытывает чувство, будто наблюдает за трюком фокусника. Вот, например, 104 × 109. Рядом с каждым из них пишем число, на которое оно превышает сотню (см. пример ниже). В левом столбце сложим первое число со второй разностью и запишем результат: 104 + 9 = 113. В правом столбце перемножим две разности: 4 × 9 = 36. «Соединим» эти числа, то есть запишем их одно за другим и – тадам! – волшебным образом получим ответ: 11 336.
Другие примеры и алгебраическую формулу такого вычисления я приведу чуть позже, в главе 2. И, раз уж мы об этом заговорили, кое-что еще о вычислениях в уме. Мы тратим уйму времени на то, чтобы научиться считать столбиком, хотя научиться делать это в уме куда быстрее. Задумайтесь: как часто в обычной жизни у нас есть время и возможность достать бумагу и провести все необходимые подсчеты? Для сложных вычислений можно воспользоваться калькулятором, но не будете же вы доставать его в магазине, читая данные об энергетической ценности на упаковке продуктов, или сидя в зале собрания, или дома, включив выпуск экономических новостей. Вот здесь-то, в оценке по-настоящему важных для вас цифр, и становятся очевидными все плюсы устного счета. Увы, в школе нас хорошо учат считать на бумаге, со счетом в уме дела обстоят плохо.
Строго говоря, эта тема достойна отдельной книги, но, раз уж мы говорим о магии, а не о способностях человеческого мозга, коснемся ее вскользь, обозначив лишь самые основные положения. Главный прием, о котором я не устаю говорить: считайте слева направо. Подсчеты в уме – это процесс постоянного упрощения. Вы начинаете с проблемы огромной, неподъемной, кажущейся непомерно сложной, и расщепляете ее на несколько элементарных и очевидных вопросов, пока не получите искомый результат.