Один из первых шагов в развитии кинетической теории газов состоял в том, чтобы вычислить число молекул, движущихся с заданной скоростью. Интуиция Максвелла подсказала ему, что для этого надо игнорировать законы Ньютона, способные дать четкий прогноз движения частиц, и начать исследовать молекулярное движение как простую азартную игру. Оказалось, что он не сильно ошибся. Движение шарика в рулетке определяется законами Ньютона, которые неспособны, тем не менее, предсказать число, на котором он остановится. Как мы уже сказали ранее, для применения вероятностных методов Максвеллу нужно было сделать еще одно предположение: любое состояние системы настолько же вероятно, как и любое другое.
Случай с рулеткой изучать очень легко. Очевидно, что на рулетке любое число имеет равную вероятность выпасть. Но с газами все не так просто. Мы должны вернуться к принципу сохранения энергии, в котором говорится, что если у нас есть замкнутая система (которая не обменивается с внешним миром ни теплом, ни работой), то ее общая энергия должна оставаться постоянной. Но молекулы газа должны распределять энергии наилучшим возможным способом так, чтобы в итоге полная сумма всех их давала значение общей энергии системы. Если мы сейчас обратимся к вероятностям, то очевидный вывод в том, что все возможные состояния системы с одной и той же общей энергией равновероятны.
Он гений, но надо проверить его расчеты.
Слова прусского физика Густава Кирхгофа (1824-1887), отца спектроскопии.
Максвелл применил данную гипотезу к распределению энергии поступательного движения молекул газа. Это самый простой случай, поскольку нужно учитывать только поступательное движение в сосуде и не учитывать другие типы движения, такие как вращательное или колебательное движение.
Так как кинетическая энергия связана со скоростью, если мы узнаем, сколько молекул имеет определенную кинетическую энергию, то поймем, каково распределение в системе молекул газа по скоростям.
Для чего все это было нужно? Проще говоря, для всего.
При известном распределении скоростей можно вычислить макроскопические свойства газов: давление, температуру, а также то, что интересует нас сейчас,— энергию молекул.
Один из самых важных результатов, полученных Максвеллом, заключался в следующем: если мы сравниваем два различных газа, которые находятся при одинаковой температуре, то средняя кинетическая энергия каждой молекулы одинакова, она зависит исключительно от абсолютной температуры системы и никак не соотносится с массой или числом атомов, составляющих молекулу. Средняя кинетическая энергия прямо пропорциональна температуре. При таком отношении, справедливом только когда газ находится в равновесии (когда молекулы со- . ответствуют распределению, полученному Максвеллом), мы можем вычислить значение кинетической энергии молекулы, умножив ее абсолютную температуру на константу к. И, в качестве примера общности различных областей науки, перед нами снова та же самая константа, которая позволила Больцману вычислить значение энтропии системы на основе ее микроскопических свойств: так называемая постоянная Больцмана.
Этот расчет Максвелла является на самом деле применением самого общего следствия из кинетической теории, называемого «теорема о равнораспределении» и описывающего отношения между средней молекулярной энергией и температурой для всех типов движения, которые может осуществлять частица. Во-первых, теорема о равнораспределении предполагает, что молекулы различных веществ, когда находятся при одной и той же температуре, имеют одну и ту же среднюю кинетическую энергию. Но различные типы молекул имеют различную массу (вода в 18 раз тяжелее водорода, а кислород в 16 раз тяжелее), следовательно, если средняя энергия должна быть одной и той же, то средняя скорость не может быть таковой. Самые тяжелые молекулы будут двигаться медленно, а самые легкие — быстро. Во-вторых, средняя кинетическая энергия молекулы равна половине произведения постоянной k на абсолютную температуру системы, умноженного на число степеней свободы. Следовательно, если мы увеличим в два раза значение температуры, средняя энергия также увеличится вдвое. Или, как мы уже знаем, температура — это всего лишь макроскопическая мера кинетической энергии частиц системы.