В мае 1861 года Королевский институт пригласил Максвелла рассказать о его теории цветов. Вместо того чтобы говорить о принципах, Джеймс решил, что лучше сделать демонстрацию того, как на основе трех первичных цветов можно образовать любой другой. Он хотел сделать три фотографии одного и того же объекта с помощью разных светофильтров — зеленого, красного и синего — и показать их одновременно наложенными друг на друга. Но существовала одна проблема: фотографические пластинки того времени были чувствительны к синему цвету, и очень мало — к красному. Тем не менее попробовать все же стоило. Один коллега Максвелла в Кингсе — знаток фотографии Томас Саттон (1819-1875) — вызвался ему помочь. Ученые сделали три фотографии ленты из ткани-шотландки и наложили их друг на друга: она выглядела чудесно. Публика, которая присутствовала в тот день в Королевском институте, смогла увидеть первую в истории цветную фотографию. И самое удивительное: никто больше не мог повторить подобное еще много лет. Как такое возможно? Эксперты из лаборатории «Кодак» решили загадку век спустя. По их мнению, эксперимент Максвелла не должен был сработать, потому что фотографическая пластинка была абсолютно нечувствительной к красному свету. Задуманное у него получилось только благодаря последовательной цепи счастливых совпадений. С одной стороны, шотландка, кроме красного света, отражала немного ультрафиолетового излучения, и красный фильтр Саттона пропускал эту часть спектра. С другой стороны, эмульсия, использованная в пластинках, была чувствительна совсем не к красному цвету, а к ультрафиолету. На самом деле фотография, сделанная якобы в красном свете, была получена в области спектра, невидимой человеческому глазу: в ультрафиолете.
Первая цветная фотография (ее назвали «Ленточка из шотландки»), сделанная в 1861 году Томасом Саттоном по указаниям Джеймса Клерка Максвелла.
Несколькими месяцами ранее, в период с марта по май, Максвелл опубликовал две части своей статьи «Физические силовые линии» в «Философском журнале». Работа над ней была долгой и практически секретной. О ней ничего не упоминалось в переписке ученого с января 1858 по октябрь 1861 года, когда она уже была опубликована.
Максвелл говорил о существовании некоего физического механизма, который служит субстратом электромагнитного поля. По сути он предположил, что все пространство полно крошечных круглых ячеек, упакованных компактно, с очень низкой плотностью и способных вращаться (см. рисунок на стр. 149, где круглые ячейки для наглядности заменены на шестиугольные). Сосредоточимся на одной из них. Когда она вращается, центробежная сила изменяет ее форму, расширяя по экватору и сжимая вдоль оси вращения так же, как это происходит с нашей планетой. Естественно, расширяясь посередине, она будет толкать остальные ячейки, которые ее окружают. А если все станет вращаться в одном направлении, то система будет осуществлять эффективное давление (толкать) в направлении, перпендикулярном оси вращения. Если мы посмотрим на ось вращения, то увидим точно противоположное. Так как в полюсах ячейки имеют тенденцию сжиматься, можно это истолковать так, что появляется натяжение. Следовательно, если все ячейки образуют линию в пространстве, то ось вращения и направление, перпендикулярное ей, будут вести себя как силовые линии, предложенные Фарадеем: появятся сила притяжения вдоль оси вращения и сила отталкивания в направлениях, перпендикулярных ей. Более того, так как эти ячейки могут вращаться по часовой стрелке или против нее, обе ситуации позволяют определить два направления поля (представленные на рисунке знаками + и -).
Здесь Максвелл столкнулся с маленькой проблемой: железо и дерево в присутствии магнита не ведут себя одинаково. Как отразить данное различие? Джеймс понял, что различную магнитную чувствительность можно включить в модель, просто поменяв плотность ячеек. В терминах механики это означает, что высокая магнитная чувствительность железа равносильна наличию более плотных ячеек в этом металле.