Струны в пространстве-времени
Вспомним вкратце, что мы говорили о колебаниях фортепианной струны. Если туго натянуть струну между двумя колками и ударить по ней молоточком, она завибрирует с определённой частотой. Частота — это число колебаний в секунду. Помимо основной частоты, фортепианная струна вибрирует также на обертонах — колебаниях более высоких частот, придающих звуку рояля характерную окраску. Я приводил эту аналогию при описании поведения электрона в атоме водорода: он тоже имеет основную колебательную моду, соответствующую основному состоянию с минимальной энергией, и дополнительные моды, соответствующие более высоким энергетическим уровням.
Описанная аналогия, возможно, не полностью вас удовлетворит: «Ну и какое отношение имеет электрон в атоме водорода к стоячей волне на фортепианной струне?» — спросите вы. Большинству ближе аналогия с бесконечно малым планетоидом, кружащим по орбите вокруг крошечного солнца — атомного ядра, не так ли? Хороша ли такая аналогия? И да, и нет. Квантовая механика утверждает, что представление об электроне как о частице и представление об электроне как о волне настолько глубоко переплетены, что квантово-механическое движение электрона-частицы вокруг протона действительно может быть описано как стоячая волна.
Сравнение фортепианной струны со струнами, которые фигурируют в теории струн, на самом деле — очень правильный метод. Чтобы избежать путаницы с разными видами струн, я буду называть те струны, которыми занимается теория струн, «релятивистскими струнами». Этот термин имеет очень глубокий дидактический смысл, потому что теория струн включает в себя теорию относительности, как специальную, так и общую. Сейчас я хочу поговорить об одной конструкции теории струн, которая настолько похожа на фортепианную струну, насколько вообще может струна быть похожа на струну. Релятивистские струны могут оканчиваться на объектах, которые называют D-бранами. Если опустить эффекты, связанные со взаимодействием струн, то D-браны можно рассматривать как бесконечно тяжёлые. Подробно о D-бранах будет рассказано в следующей главе, а сейчас я сделаю лишь небольшое отступление, так сказать, в качестве «костыля». Простейшая D-брана называется D0-браной (произносится «дэ-ноль брана»). Это точечная частица. Я уже слышу возмущение отдельных читателей по поводу возвращения к точечным частицам: «Разве не заявлял недавно автор, что теория струн ставит своей целью избавиться от точечных частиц?». Ну да, так и было до середины 1990-хгодов, а потом точечные частицы опять вернулись в теорию струн, и не одни, а привели за собой целый зоопарк неведомых зверушек. Но я забегаю вперёд. Всё, что я хочу, — это привести струнно-теоретический аналог рояльных колков, удерживающих струну в натянутом состоянии, — и D0-браны настолько уместны в этой роли, что я не в силах удержаться от рассказа о них. Короче, натянем релятивистскую струну между двумя D0-бранами, как фортепианную струну между двумя колками. Сами D0-браны ни к чему не прикреплены, но они остаются неподвижными, поскольку имеют бесконечную массу. Забавно, не правда ли? Так, ладно. О D0-бранах — в следующей главе, а сейчас — только о натянутой струне.
Самый нижний энергетический уровень натянутой струны соответствует отсутствию колебаний. Ну... почти отсутствию, ведь небольшие квантовые колебания присутствуют всегда, и этот факт имеет важное значение. Правильнее всего представлять себе нижний энергетический уровень как обладающий небольшой колебательной энергией в рамках дозволенного квантовой механикой. Возбуждённые уровни релятивистской струны соответствуют её колебаниям либо на основной частоте, либо на обертонах основной частоты, причём она может вибрировать и на нескольких частотах одновременно, так же как и фортепианная струна. Но, так же как и электрон в атоме водорода, релятивистская струна не может вибрировать на произвольной частоте. Электрон может выбирать энергетические уровни из дискретного набора. У релятивистских струн всё точно так же. Разные колебательные уровни обладают разными энергиями, а поскольку масса и энергия связаны соотношением E = mc2, то разным колебательным состояниям соответствуют и разные массы.
Было бы замечательно, если бы я мог сказать, что частота колебаний струны связана с её энергией простым соотношением типа E = hv, как это было в случае фотонов. К сожалению, всё не так просто. Полная масса струны складывается из нескольких составляющих. Первая из них — это масса покоя струны, которая соответствует энергии натяжения струны между двумя D0-бранами. Вторая — масса, соответствующая колебательной энергии, которая в свою очередь складывается из энергий колебаний всех обертонов. Напомню, что энергия и масса связаны соотношением E = mc2. И наконец, третья составляющая — это масса, соответствующая энергии неустранимых квантовых флуктуаций, носящих название нулевых колебаний. Термин «нулевые колебания» заставляет нас помнить о принципиальной неустранимости квантовых флуктуаций. Так вот: вклад энергии нулевых колебаний в массу струны... отрицателен! Согласен, это странно. Очень странно. Чтобы показать, насколько это странно, я приведу такой пример. Если мы ограничимся одной колебательной модой струны, то увидим, что энергия нулевых колебаний этой моды положительна. Каждый из более высоких обертонов в отдельности даёт ещё больший положительный вклад в энергию струны. Но если мы соответствующим образом просуммируем вклады всех обертонов, то получим отрицательное число. Если вы считаете, что это недостаточно плохо, то вот вам ещё более скверная новость: я утаил часть правды, сказав, что вклад энергии нулевых колебаний отрицателен. Все эти эффекты — масса покоя, энергия колебаний и энергия нулевых колебаний — входят в выражение общей массы квадратами своих величин. И если в этой сумме преобладает энергия нулевых колебаний, то квадрат полной массы оказывается отрицательным, а это значит, что сама масса оказывается мнимой, как корень из минус единицы.