Выбрать главу

Следствия калибровочной симметрии делают её совершенно непохожей на те симметрии, которые мы обсуждали ранее. Она выглядит скорее как набор правил. Фотон не может покоиться из-за калибровочной симметрии. Спин фотона не может иметь произвольное направление из-за калибровочной симметрии. Есть ещё одно важное следствие: электрон имеет электрический заряд из-за калибровочной симметрии. Последнее лучше всего проиллюстрировать аналогией между калибровочной и вращательной симметрией. Калибровочная симметрия электрона настолько похожа на вращательную симметрию, что иногда даже говорят о калибровочном «вращении». Но калибровочное вращение — это не вращение в пространстве, а более абстрактное понятие, имеющее отношение к одному из способов квантово-механического описания электрона. В отличие от вращения диска проигрывателя, «вращение» электрона имеет квантово-механический смысл, оно соответствует определённой калибровочной симметрии. И вот это абстрактное квантово-механическое «вращение» электрона и есть, по сути, его электрический заряд. Заряд электрона отрицателен, а заряд позитрона положителен, — это означает, что они в абстрактном калибровочно-симметричном смысле «вращаются» в разные стороны.

Оказывается, что введение дополнительных измерений позволяет сделать предыдущий разговор более предметным. Допустим, что дополнительное измерение имеет форму кольца, и представим, что частица движется в этом измерении по окружности. Она может двигаться как по часовой стрелке, так и против. Если это кольцо очень-очень мало, мы не сможем обнаружить движение в этом измерении, но тем не менее частица будет вращаться в этом измерении либо в одну, либо в другую сторону. Двигаясь в одном направлении, частица будет иметь положительный заряд, двигаясь в другом — отрицательный. Представляя дополнительные измерения в виде миниатюрных колец, или, как принято говорить, свёрнутых измерений, мы не должны удивляться тому, что их калибровочная симметрия настолько похожа на вращательную. Калибровочная симметрия электрического заряда — фактически то же самое, что и симметрия окружности. Частица может двигаться в этом измерении только в двух возможных направлениях — условно говоря, по часовой стрелке и против. Соответственно в природе существуют только два электрических заряда: положительный и отрицательный.

В корпускулярном описании спины фотонов ориентированы в одном направлении — в направлении движения. В волновом описании электрическое поле имеет форму штопора. Если спины всех фотонов ориентированы так, как я нарисовал, то такой свет называется циркулярно поляризованным

Идея представить электрический заряд в виде движения в свёрнутом измерении была предтечей теории струн. Ей почти сто лет, но за это время никому не удалось что-нибудь реально посчитать на её основе. Часть великого замысла теории струн как раз и состоит в том, чтобы заставить упомянутую идею работать, но у нас есть много дополнительных измерений, чтобы поиграть с ними, и это вселяет некоторую надежду. То есть независимо от того, правилен наш подход или нет, следует признать, что электрический заряд и электромагнитные взаимодействия фундаментально связаны с вращательной симметрией и с движением по окружности.

Может показаться, что мы слишком далеко ушли от D-бран, но это не так. D-браны как раз служат примером тому, о чём мы только что говорили. Как мы видели, D-браны обладают вращательной симметрией. Вспомним хотя бы сравнение D1-браны с флагштоком посреди тротуара, имеющим ту же симметрию, что и окружность. Вращательная симметрия помогает объяснить многие свойства D-бран, но и калибровочная симметрия играет огромную роль. Вот первый намёк на связь D-бран и калибровочной симметрии: если мы возьмём D1-брану, представляющую собой прямую, и «стукнем» по ней в определённом месте, то от места удара в разные стороны побегут два небольших возмущения. Эти возмущения будут двигаться со скоростью света, ведя себя как безмассовые частицы, и ничто не заставит их остановиться. Мы уже знаем, что безмассовые частицы, такие как фотоны, обладают калибровочной симметрией, и калибровочная симметрия заставляет их быть безмассовыми. То же самое происходит и с возмущениями на D1-бране. Я, конечно, сильно всё упрощаю, потому что возмущения на D1-бране, конечно же, совсем не похожи на фотоны. Например, они не имеют спина, но если мы рассмотрим такие же возмущения на D3-бране, то некоторые из них будут иметь спин и с математической точки зрения ничем не будут отличаться от фотонов. Как только этот факт был установлен, физики тут же кинулись строить модели мира, в которых он представляет собой D3-брану. Правда, всё ещё остаются дополнительные измерения, но мы не можем их наблюдать, поскольку мы застряли на бране. Кажется, что достаточно оснастить эту брану фотонами, и идея будет вполне жизнеспособной. Всё, что нам нужно для полного удовлетворения, это ещё пятнадцать или около того элементарных частиц. К сожалению, D3-брана сама по себе не обеспечивает их существования. В настоящее время в этом направлении ведутся интенсивные исследования, цель которых состоит в том, чтобы выяснить, какие ещё ингредиенты нам нужны для построения мира на D3-бране.