(a +b) × (a + b) = (a + b) × a + (a + b) × b = a × a + b × a + a × b + b × b.
Из требования q × q = 0 следует, что:
a × a + b × a + a × b + b × b = 0.
Но так как a × a = 0 и b × b = 0, то сумма оставшихся двух слагаемых тоже должна быть равна нулю:
b × a + a × b = 0,
откуда следует, что:
a × b = −b × a.
Ключевая идея состоит в том, что фермионные измерения — это математическая абстракция. Они являются не чем иным, как алгебраическими правилами, используемыми для их описания.
Суперсимметрия является симметрией между бозонными и фермионными измерениями. Что это означает? Симметрия в широком смысле — это неизменность чего-то при определённых преобразованиях этого чего-то: например, симметрия квадрата означает, что при повороте квадрата на 90° мы получим точно такой же квадрат. Бозонные измерения представляют собой обычные измерения вроде длины и ширины. Шесть дополнительных измерений теории струн тоже являются бозонными измерениями, но они нас сейчас не интересуют. Фермионные же измерения представляют собой всего лишь набор необычных алгебраических правил, описанных ранее.
Будем по аналогии с поворотом квадрата использовать термин «поворот» и для суперсимметричного преобразования. Поворот из бозонного измерения в фермионное означает, что если частица перед поворотом двигалась в бозонном измерении, то после поворота она в нём больше не движется, и наоборот, если до поворота частица не двигалась в бозонном измерении, то после поворота она начинает в нём двигаться. Непонятно? Хорошо, попробую по-другому. Физически это означает, что если мы возьмём бозон, то после поворота в фермионное измерение он станет фермионом. Математически суперсимметричный поворот из бозонного измерения в фермионное означает замену числа 1, обозначающего бозонное измерение, на одну из букв: a или b, которые обозначают фермионные измерения. Сохранение неизменности объекта при суперсимметричном повороте сводится к тому, что получившийся в результате фермион будет иметь ту же массу и тот же заряд, что и исходный бозон. И это приводит нас к одному из наиболее фундаментальных предсказаний суперсимметрии: для каждого бозона должен существовать суперсимметричный партнёр: фермион, обладающий такой же массой и зарядом, и наоборот, для каждого фермиона должен существовать суперсимметричный ему бозон.
Один из фактов, в которых мы уверены, заключается в том, что мир не является идеально суперсимметричным. Если бы в этом мире существовал бозон с такой же массой и зарядом, как у электрона, мы бы, несомненно, знали о нём, потому что существование такого бозона в корне изменило бы структуру атома. Возможно, существует какой-то механизм, подобный механизму конденсации тахионов, нарушающий суперсимметрию. Если идея существования это странной новой симметрии заставляет вас чувствовать себя идущим по зыбучим пескам, я в этом не виноват. Как и большая часть теории струн, суперсимметрия является плодом длинной цепочки спекулятивных рассуждений теоретиков и не имеет под собой надёжной экспериментальной опоры.
Если гипотеза суперсимметрии и фермионных измерений подтвердится экспериментально на Большом адронном коллайдере, это будет триумф чистого разума — реванш за все предыдущие насмешки скептиков. Впрочем, не исключено, что правы окажутся скептики. Откровенно говоря, я не удивлюсь любому исходу.