Выбрать главу

Симметрия, требующая существования целого набора новых частиц, эквивалентного уже существующему, может показаться скорее шагом назад, чем вперёд. В конце концов, разве задача создания универсальной теории не требует уменьшения количества эксплуатируемых ею сущностей? Примерно такое чувство родила во мне суперсимметрия, когда я впервые с ней познакомился. Но вот вам пример, над которым стоит задуматься. Уравнение Дирака, описывающее электрон, было придумано в 1920-х годах, и оно давало одно неожиданное предсказание: существование антиэлектрона, обычно называемого позитроном. Вскоре физики предсказали существование античастиц для каждой известной частицы, и они открыли их! С моей точки зрения, суперсимметрия не обладает такой же аурой неизбежности: она не нужна для описания уже известных частиц, в то время как уравнение Дирака было необходимо для описания электрона. Хотя, возможно, не стоит ставить в один ряд подтверждённые и неподтверждённые предсказания.

Распад скварка на несколько детектируемых частиц и на ЛСЧ (легчайшая суперсимметричная частица), которая ускользает незарегистрированной

Существует большая разница между наличием у частицы массы, находящейся в диапазоне, покрываемом БАК, и возможностью зарегистрировать эту частицу, поскольку чрезвычайно сложно разобраться в том обилии разнообразных мусорных частиц, которые рождаются в ходе каждого столкновения, и реконструировать весь ход событий. На самом деле Теватрон исправно выдавал на-гора все эти годы бозоны Хиггса, но трудности реконструкции всех событий рождения и уничтожения частиц позволили ему все эти годы успешно скрываться от исследователей, в то время как масса бозона Хиггса составляет около 130 масс протона — это меньше, чем масса t-кварка! Гораздо проще искать счастицы при помощи БАК. Например, глюино, если их массы лежат в доступном диапазоне, должны генерироваться на БАК целыми гроздьями, тем более что они предсказываются многими вариантами суперсимметричных теорий, и их должно быть сравнительно легко отфильтровывать из потока экспериментальных данных. В цепочках распада, предсказываемых этими теориями, глюино передают часть своей энергии покоя другим счастицам, которые в свою очередь передают часть своей энергии покоя дальше по цепочке. В конце цепочки распадов остаётся только одна легчайшая суперчастица. Для обозначения легчайших суперсимметричных частиц используется аббревиатура ЛСЧ. Принято считать, что ЛСЧ не распадается на другие частицы, а покидает детектор необнаруженной. Если всё это правда, то понятно, почему детекторы БАК не регистрируют суперчастицы, а обнаруживают только продукты их распада.

Прежде чем продолжить рассказ о ЛСЧ, я хотел бы отметить одну очень неприятную особенность БАК. Даже если в эксперименте обнаружится что-то похожее на счастицу, это не позволит нам с уверенностью утверждать, что мы открыли суперсимметрию. Виной всему обилие частиц, рождаемых при протон-протонных столкновениях. Взаимодействия между кварками и глюонами столь сильны, что они маскируют новые явления. В результате определить спин вновь открытой частицы очень трудно. По этой причине физики выступают за постройку нового ускорителя, называемого Международным линейным коллайдером, или МЛК. В его задачу будет входить ускорение электронов и позитронов, потому что их столкновения проходят более «чисто», чем столкновения протонов. Предполагается, что МЛК позволит более надёжно отфильтровать предсказания суперсимметрии от предсказаний других альтернативных теорий. Но МЛК пока что находится в стадии проектирования и вступит в строй не ранее 2020 года. Печальная судьба Сверхпроводящего суперколлайдера показывает, как трудно воплощать подобные проекты в жизнь.

Вернёмся к суперсимметрии. Обнаружение ЛСЧ будет важнейшим открытием последних лет, поскольку, возможно, именно они составляют так называемую тёмную материю, играющую ключевую роль в формировании галактик. На протяжении десятилетий астрономы и космологи ломали голову над аномально высокой массой галактик. Современная наблюдательная техника позволяет без особого труда пересчитать все звёзды в той или иной галактике и вычислить их суммарную массу. Оказывается, даже если к этой массе добавить массу газа и пыли, которые всегда присутствуют в галактиках, её окажется недостаточно для того, чтобы удержать звёзды в галактике. Для объяснения этого феномена была придумана тёмная материя, дополняющая недостаток массы. Расчёты показывают, что общая масса тёмной материи в наблюдаемой части Вселенной должна в пять или шесть раз превосходить массу обычной материи, доступной нашим наблюдательным инструментам. Но что эта материя собой представляет? На этот счёт имеется масса гипотез, начиная от потухших звёзд и заканчивая субатомными частицами. У ЛСЧ есть два важных преимущества перед другими кандидатами на роль тёмной материи. Во-первых, в большинстве наиболее реалистичных суперсимметричных теорий ЛСЧ очень массивны (их масса более чем в 100 раз превосходит массу протона), электрически нейтральны и стабильны. Во-вторых, легко понять, как они возникли на ранней стадии эволюции Вселенной и почему их суммарная масса в пять-шесть раз превышает массу обычного вещества, то есть вещества, состоящего преимущественно из протонов, нейтронов и электронов.