Меня восхищает римская история, но я не упомянул бы о ней, если бы она не вызывала у меня ассоциаций с темой моей книги — с теорией струн. Мы замечаем вокруг себя следы древнеримской культуры, но нас разделяют века. Энергетическая шкала физических явлений, описываемых теорией струн, конечно, если последняя верна, простирается настолько далеко, что это «далеко» лежит за пределами возможностей наших измерительных приборов. Если бы мы были способны охватить весь струнно-теоретический спектр энергий, то непосредственно наблюдали бы все те экзотические вещи, о которых я собираюсь рассказать: дополнительные измерения, D-браны, дуальности и многое другое. Всё это лежит в основе нашего наблюдаемого мира (повторюсь: если теория струн верна), подобно тому как древнеримская цивилизация лежит в основе нашего сегодняшнего общественного устройства. Только теорию струн отделяют от повседневного опыта не века истории, а порядки значений энергии. Чтобы достичь тех энергий, при которых можно непосредственно наблюдать проявления дополнительных измерений, предсказываемых теорией струн, ускорители элементарных частиц должны быть в сто триллионов раз мощнее, чем используемые сегодня.
Эта энергетическая пропасть ставит физиков в неловкое положение, вынуждая признать, что проверить теорию струн крайне трудно. В главах 7 и 8 я расскажу о попытках таких проверок, а в этой и двух следующих сосредоточусь на описании теории струн в терминах самой теории струн, без каких бы то ни было апелляций к реальному миру, за исключением разве что отдельных аналогий, которые потребуются для более наглядного объяснения. Представьте, что я пересказываю краткий курс римской истории: повествование изобилует множеством неожиданных развилок и поворотов, и зачастую вам трудно удержать его нить. Но мы изучаем древних римлян не столько для того, чтобы понять их, сколько для того, чтобы понять самих себя. Вот точно так же и теория струн содержит массу неожиданных развилок и поворотов, и я не ожидаю, что мои объяснения окажутся простыми и понятными, но надеюсь, что глубокое понимание теории струн поможет лучше понять наш реальный мир.
В данной главе мы сделаем три важных шага к этому пониманию. Первый шаг позволит увидеть, как теория струн разрешает фундаментальное противоречие между теорией гравитации и квантовой механикой. Второй шаг объяснит, каким образом струны колеблются и движутся в пространстве-времени. Третий — даст представление о том, как само пространство-время возникает в наиболее широко используемом математическом описании струн.
Гравитация против квантовой механики
Квантовая механика и Общая теория относительности — две триумфальные физические теории, возникшие в начале XX века, — как оказалось, не согласованы друг с другом. Трудность возникает при применении метода, получившего название перенормировка. Я расскажу о перенормировке на примере фотонов и гравитонов, о которых мы уже говорили в предыдущих главах. Суть несогласованности состоит в том, что фотоны приводят нас к перенормируемой теории (что означает: «хорошая теория»), тогда как гравитоны приводят к неперенормируемой теории, и это фактически означает, что у нас нет общей теории, описывающей фотоны и гравитоны.
Фотоны взаимодействуют с электрическими зарядами, но при этом сами по себе электрически нейтральны. Например, имеющий электрический заряд электрон в атоме водорода, перескакивая с одного энергетического уровня на другой, излучает фотон. Именно это я имею в виду, когда говорю, что фотоны взаимодействуют с зарядами. Утверждение, что сам фотон не имеет электрического заряда, равносильно утверждению, что свет не проводит электричество. Если бы это было не так, то вы каждый раз получали бы удар током, схватившись за какой-нибудь предмет, который достаточно долго пролежал на солнечном свету. Фотоны не взаимодействуют друг с другом; они взаимодействуют только с электрическими зарядами.
Гравитоны реагируют не на заряды, а на массу, энергию и импульс. А поскольку они переносят энергию, то взаимодействуют и друг с другом. Может показаться, что это не представляет особой проблемы, однако именно из-за этого мы и сталкиваемся с трудностями. Квантовая механика учит нас, что гравитоны ведут себя и как волны, и как частицы. Частицы гипотетически являются точечными объектами. А точечный гравитон будет притягивать вас тем сильнее, чем ближе к нему вы окажетесь. Его гравитационное поле может быть описано как испускание других гравитонов. Мы будем называть пробный гравитон материнским, а испускаемые им гравитоны — дочерними. Гравитационное поле вблизи материнского гравитона является очень сильным. А значит, его дочерние гравитоны обладают огромными энергиями и импульсами. Это непосредственно следует из принципа неопределённости: дочерние гравитоны наблюдаются на очень небольшом расстоянии Δx от материнского гравитона, и поэтому, согласно соотношению неопределённостей, Δp × Δx ≥ h/4π, неопределённость их импульса, Δp, очень велика. Беда в том, что гравитоны также чувствительны и к импульсу. Дочерние гравитоны сами будут испускать гравитоны. Весь процесс ветвится и невероятно быстро расходится: вы не можете учесть все последствия взаимодействия всех гравитонов.